Gretchen

Humanoid Open Hardware Platform for Education and Research

Intro

Gretchen

Sensorimotor boards

Sensorimotor boards

Intro

Intro

Presenters

Heinrich Mellmann

Anastasia Prisacaru

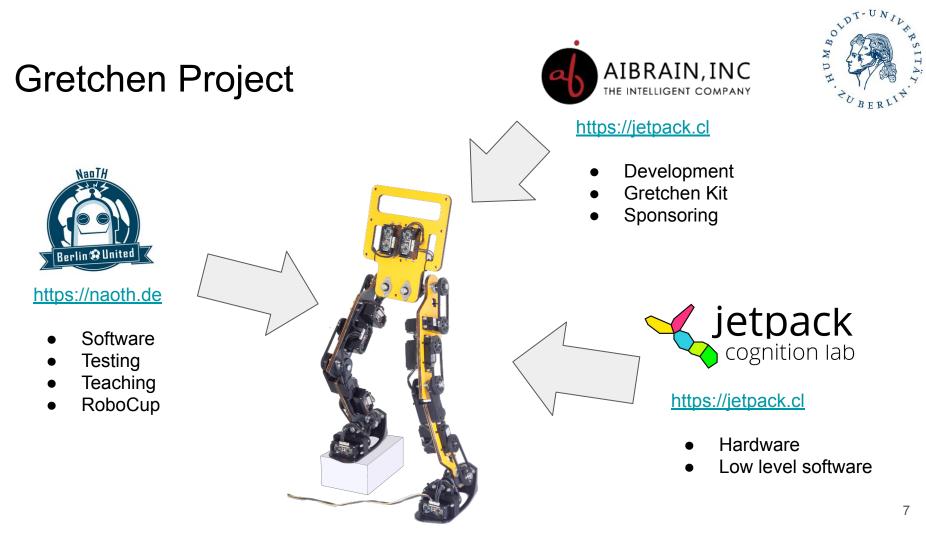
Matthias Kubisch

Berlin United

- RoboCup Team at the Humboldt-Universität zu Berlin <u>https://naoth.de</u>
- Participated in RoboCup since 1998 [SPL, S3D, 4LL, (HL KidSize)]
- Main focus on software
- Motivation:
 - want to build a robot in a sustainable way
 - want to collect experience with hardware

Berlin United at the RoboCup German Open 2019

Gretchen Project


- Aims
 - Good for education
 - Accessible (high level access)
 - Teaching materials
 - Documentation
 - Affordable
 - Good for research
 - Complex
 - Extensible
 - Access on different levels
 - Good for RoboCup (one day :)
 - Robust enough

- Approach
 - Modularity
 - Open source, open hardware
 - For as many components as possible
 - Accessible manufacturing methods
 - Community
 - Learn from other open platforms
 - Collaborate on components

- Current state
 - Prototype of Assembly kit
 - Documentation

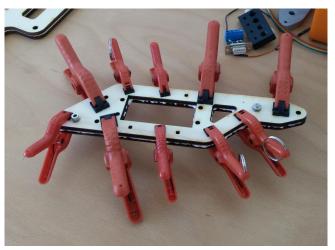
https://github.com/aibrainag/Gretchen

• Used in seminar

Gretchen

Gretchen

Gretchen Robot


- Goal: provide a low-cost and low-level access to bipedal robots
- Open Source and Open Hardware
 - github.com/aibrainag/gretchen
- Hight: 0.74m
- Weight: ~5kg
- 10 DOF
- Materials:
 - Wooden parts
 - 3D-printed parts
 - Bearings
 - Toothed belts
 - Servos and electronic components
- Bill of materials: 1400€

Wooden Body Parts

- Thighs, shanks and lower torso
- Plywood, 2x0.5mm thick
- Laser cutting, gluing, coloring and coating

Bearings

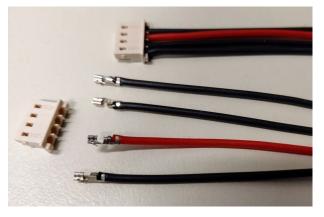
- Ensure a smooth connection between moving parts
- Connected in pairs on both sides
- Self-centered

Toothed Belts

- Indirect transmission between the joints and the motors
- Run over matching toothed pulleys

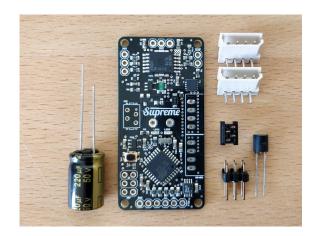
3D-Printed Parts

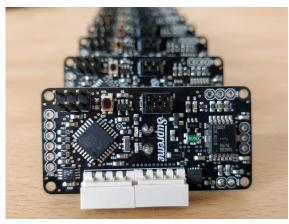
- Joints, feet, pulleys, motor covers
- Hip pitch+roll due to the inner X/Y integrated pulley
- Knee pitch
- Ankle pitch+roll due to the cardan joint mechanism
- Feet perfectly identical



Servos and Electronic Components

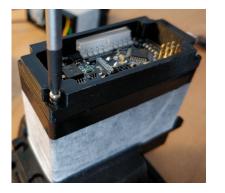
Servo


HS-805MG Mega Giant Scale, Metal Gear Servo:


- brushed DC motor
- a metal gear train
- a potentiometer
- an integrated circuit
- Microcontroller: RCD ht7004
- Speed: at 6 Volt 0.14 sec /60 degrees (71 rpm)
- Stall torque: at 6 Volt 24.7kg x cm (2,4 Nm)
- Weight: **197 g**
- Dimensions: 65,8 x 30,0 x 57,4 mm
- Price: ~50€

Sensorimotor board

- Open Source
- Easily programmable microcontroller • ATmega328P 16MHz
- Voltage range 6V 12V
 - At 12V -> higher torque
- Bus communication RS485
- Sensory measurements
 - Current
 - Temperature
 - Position
 - Voltage
 - External measurements via I2C

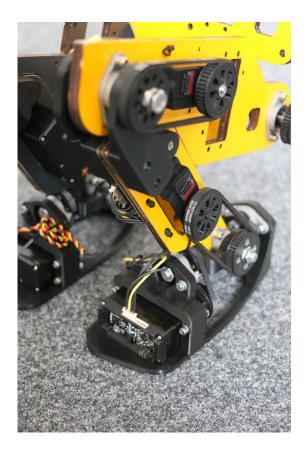

Changing the servo board

- Removing the old board
 - \circ \quad Keep the potentiometer wires
- Prepare the motor wires
- Solder cables to the new board
- Inserting the boards in the 3D-printed covers
- Mounting the 3D-printed motor pulleys

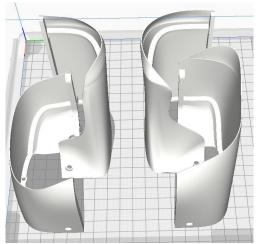
Challenges

- Desoldered motor pin, which made the soldering of the motor wires much harder
 - Solution: gas torch and soldering fat
- shifted position of the side hole of the servo covers, due to the error of the 3D-printer
 - Solution: drilling the hole

Confectioning the bus cables

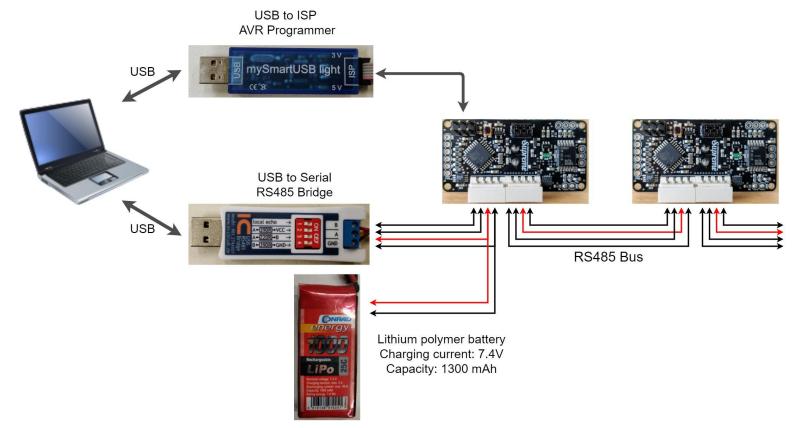

- Confectioning 9 cables:
 - each cable: 3 black and 1 red wire (power)
 - \circ twist the cables pairwise
- Silicon wires
- Flexible
- Heat resistant

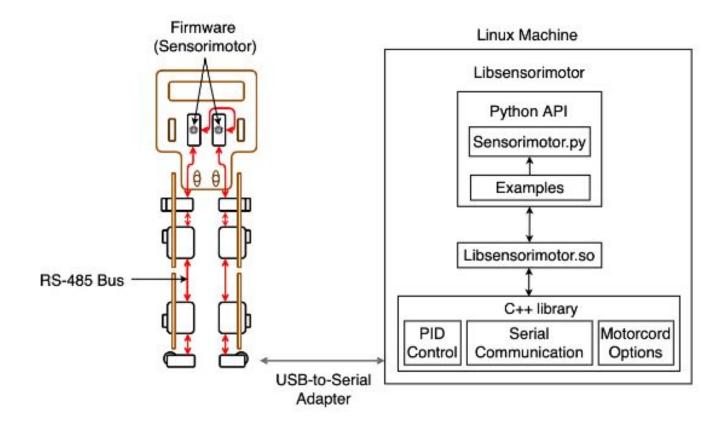
Final assembly

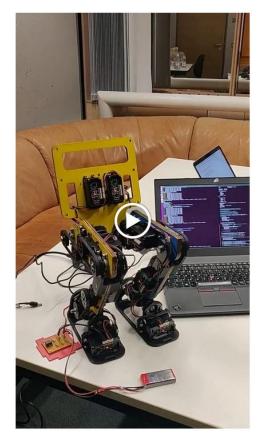

- Putting everything together
 - Mounting the motors
 - Mounting the toothed belts
 - Connecting and tightening the bus cables

Shells

- ToughPLA (Ultimaker)
- Lightweight protection
- Easy to (un)mount for maintenance







Communication between servos and PC

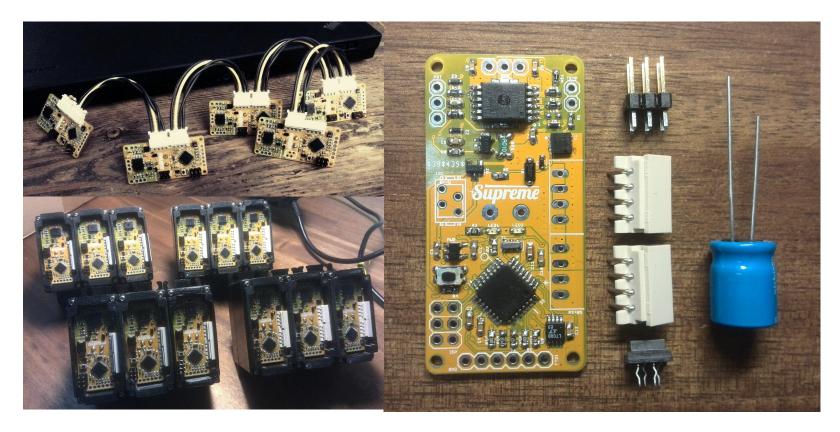
Software Overview

https://youtu.be/Sa2bKjIAHFQ

Stand Up Demo & First Steps

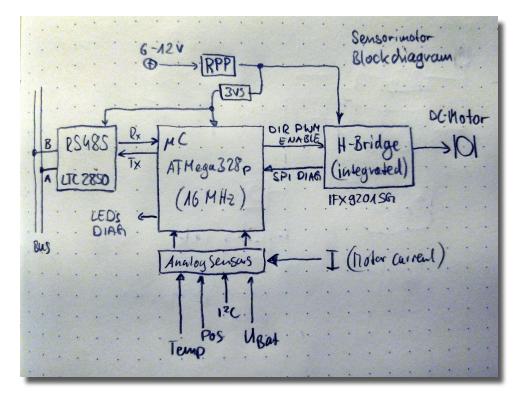
https://youtu.be/ubMeLkMhT9Y

Sensorimotor boards

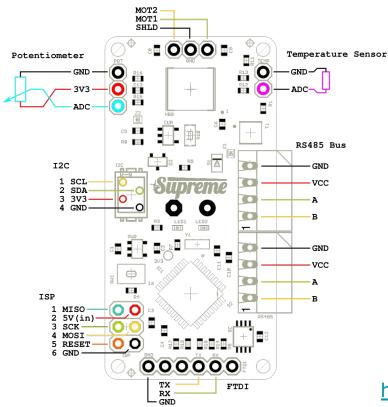

Sensorimotor boards

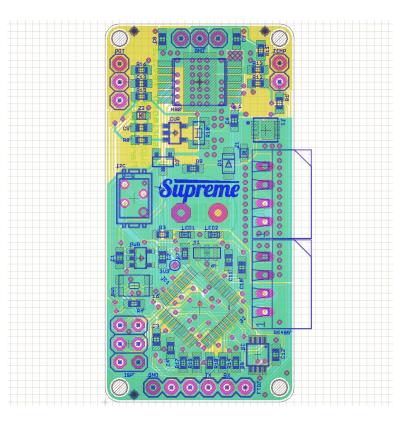
What is the Sensorimotor project about?

- open-source robot servo drive
- free hardware design and free software
- hackable firmware
- allow for modular robots (robust rs485 bus communication)
- motor brand agnostic, any DC motor up to 6A,12V
- low-cost smart servo capabilities
- self-assembly to further reduce cost
- Initial motivation: building a fourlegged-robot



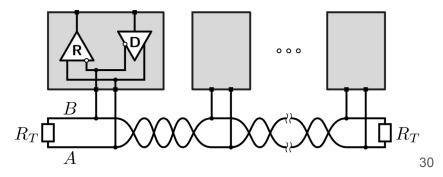
Sensorimotor




Sensorimotor: Technical Details / Schematics

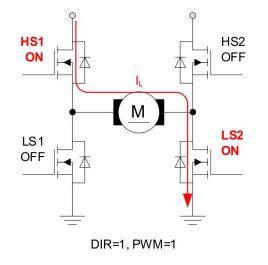
- μC: ATmega328p
- RS485 bus, 1 MBaud, 256 units max.
- 6 A integrated H-bridge (IFX9201SG)
- position, velocity, current, voltage and temperature sensing
- additional sensors possible via I²C
- lean client/server com protocol
- 6–12 V(DC) supply voltage range

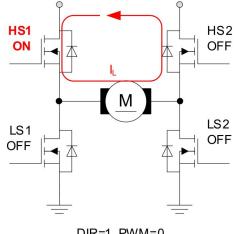
Sensorimotor: Schematics


https://github.com/suprememachines/sensorimotor

RS485 bus communication

- multiple-tap differential bus
- inherent noise rejection
- speed: 1 MBd, limited by µC
- for wires > 1-2m, termination resistors recommended to reduce reflections
- simple custom protocol


++ UX0 Motor Request from Host to Sensorimotor ++	
00 1111.1111 Sync 0	0xFF
01 1111.1111 Sync 1	0xFF
02 1011.000D Request ID	0xB0, 0xB1, D:DIR
03 0xxx.xxxx Motor ID	IDs 0127
04 xxxx.xxxx Voltage	simple 8bit PWM
05 cccc.cccc Checksum	~sum_i(byte_i) + 1



Motor Control Hardware Details

- Integrated H-bridge IFX9201SG
- 6A
- SPI-interface
- Freewheeling Mode

Forward

Freewheeling Through HS 2 Body Diode (Forward)

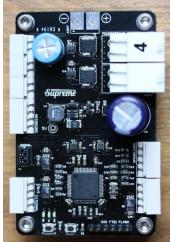
Firmware

- 1 KHz internal loop
- 100 Hz communication loop (10 boards)
- Faster com with fewer boards in bus
- C++11 / xpcc-framework (now: MODM¹)
- Scons build system
- Servo-PWM control
- What's next: integrate PID, position and velocity control, CSL², torque control

```
systemClock::enable();¬
92
93
94
           /* setup LEDs */~
           led::yellow::setOutput();¬
95
96
           led::red::setOutput();¬
97
           /* setup motor h-bridge */~
99
           motor::VS0::setOutput();¬
           motor::DIR::setOutput();¬
101
           motor::PWM::setOutput();-
102
           motor::DIS::setOutput():¬
104
           /* connect and setup uart */¬
           D0::setInput(Gpio::InputType::PullUp);-
           D0::connect(Uart0::Rx);¬
           D1::connect(Uart0::Tx);¬
           Uart0::initialize<systemClock, Uart0::Baudrate::MBps1>();
```

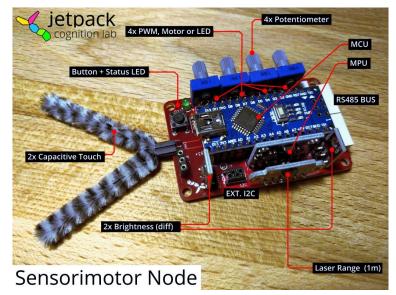
¹<u>https://modm.io/</u> ²CSL: Cognitive Sensorimotor Loops (M.Hild et al.)

LibSensorimotor


- Simple C++/Python library for controlling sensorimotors via Linux computers (e.g. PC or Raspberry PI)
- Supports various control modes
- Embedded Library Version under development

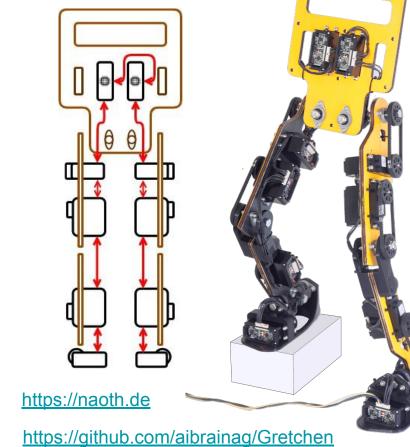
Other projects using Sensorimotor

Flatcat



Hannah

Sensorimotor: Ongoing and Future Developments


- Hardware Revision 1.2 (coming soon) with:
 - smaller footprint, easier to solder
 - pre-assembled temperature sensor
 - robust mounting holes
- LibSensorimotor for Arduino and STM32
- Derivative Versions:
 - Node, an RS485/Arduino based daughter board for motor control and sensor capture (prototype)
 - Kiwi, a micro-servo version (wip)
 - *Cargo*, a brushless heavy load version (wip)

Stay tuned: <u>https://jetpack.cl</u>

Thank you for listening!

Ressources

- Gretchen related repositories
 <u>https://github.com/Gretchen</u>
- Berlin United
 <u>https://naoth.de</u>
- Jetpack Cognition Lab
 <u>https://jetpack.cl</u>
- AlBrain

https://github.com/aibrainag