
Walking 

Currently, we have two walking algorithms.  

The first algorithm is adopted from the quintic walk algorithm of the team bitbots. We modified 

and deployed this open-loop walking generator on our own MOS robot. This generator determines 

the next position of Center of Mass and the origin of coordinates of feet based on the target velocity, 

the current state of walking and a large number of parameters. A trajectory for the Center of Mass is 

then generated by interpolating the points with quintic spline. We then calculate the inverse 

dynamics to get the goal position of each motor. By tuning the parameters manually, we are able to 

develop a stable walking pattern for each robot. This algorithm works well most of the time, but it 

needs quite a lot of work on fine tuning when hardware or ground conditions are changed, and it 

occationally loses control when the field is not so smooth. 

The second algorithm is the one we are currently paying attention to further developing. We get 

the inspiration from Humanoid Robots by Shuuji Kajita and from the team CITBrains. It is generally a 

Model Predictive Control (MPC) algorithm based on the Linear Inverted Pendulum Model (LIPM). 

We first generate a sequence of footstep points according to the target velocity and the current 

velocity. Then we apply the MPC algorithm on the sequence to generate a optimized trajectory for 

the Center of Mass. The loss function is defined concerning two basic aspects: one is the error 

between tne predicted trajectory of the Center of Mass and its preferred position to minimize the 

moment on the Zero Moment Point (ZMP), and the other is the effort it needs to pay to follow the 

planned trajectory. In this case of the LIPM, the ZMP is exactly the end of the pendulum, or the 

center of the footstep point. A walking pattern of ~100 FPS is then generated by calculating the 

inverse dynamics for our robot. 

 

Vision  

The software structure now is based on the ROS framework, which greatly increases the 

efficiency of multitasking coordination and simplifies the process of application of a new algorithm. 

There are four modules of the algorithm of our robot, vision is one part of them. Vision Module is 

used to recognize feature objects in the football court and get their position relative to the robot. We 

use ZED 2i Stereo Camera, a binocular camera, and our vision algorithm is based on computer 

vision (OpenCV). 

YOLOv3 is used in our algorithm to recognize the ball, goal and sidelines. In our last few 

competitions, the code works well after training with dataset from a monocular camera. Since we 

have upgraded our vision sensor to a binocular camera, adjustment and validation is necessary. 

Meanwhile, the distance and direction of objects can be easily calculated. 

 

Localization 

Self-localization is a state estimation problem. The robot needs to estimate its position and 

orientation from the data of its sensors, mostly the camera and IMU. We choose the widely used 

particle filter algorithm to solve this problem.  

The structure of this algorithm is made of Map input, Initialization, Prediction, Updating the 

weight of Particles and Re-sampling. The process of map input is done in advance by giving 

standard playing field map. The algorithm of the initialization of particles is also important. Gauss 

noise is added to generate many particles. We design different algorithms for different situations, 



such as initialization at the beginning of the match or initialization after picking up. The stage of 

prediction incorporates the states of particles with data from the IMU, mostly orientation. During the 

updating, we first incorporate the data from the camera and IMU, then increase the weight of 

particles whose observation target most close to real feature objects. At resampling, to prevent 

kidnapped particles, we chose half particles based on updated weight, and generate the other half 

by adding noise on the chosen particles. The particle with the highest weight among these particles 

represents the position of the robot. 

We have changed our camera from a monocular camera to binocular camera. It provides 

depth information, and will increase the accuracy of localization algorithm. We plan to accomplish 

this process in the coming spring semester. 

Behavior 

Building upon the previous hierarchical state machine (HSM) framework, we have transitioned 

to employing behavior trees (BT) to enhance the clarity and structure of our decision-making 

processes. Within our algorithms, behavior trees are integrated to govern the behaviors of our 

soccer robot. The algorithm framework exhibits a hierarchical structure, with the behavior tree 

comprising multiple nodes, each representing distinct behaviors the robot can demonstrate during a 

soccer match. Notably, we have established super-nodes including 'defending,' 'attacking,' 

'passing,' and 'dribbling,' with each nesting sub-nodes representing specific actions such as 

'tracking the ball,' 'positioning for a shot,' 'passing to a teammate,' and 'dribbling past opponents.' 

By leveraging the behavior tree, we can systematically organize and prioritize the robot's 

actions based on the prevailing game dynamics and our strategic objectives. By defining the tree's 

structure and outlining conditions for transitioning between nodes, we can develop a flexible and 

adaptable logic system for our soccer robot. The hierarchical nature of the behavior tree facilitates 

seamless addition, modification, or removal of specific behaviors, preserving the overall structure of 

the tree. This modular and scalable aspect proves advantageous when refining and advancing the 

robot's behavior over time. 

The behavior tree approach facilitates a structured and user-friendly methodology for 

designing our soccer robot's logic. It enables the amalgamation of simple actions to define complex 

behaviors and offers customization and evolution flexibility. With the behavior tree, our soccer robot 

can make astute decisions and display dynamic behavior on the field. Although we maintain an 

interest in multi-agent reinforcement learning for behavior, the deployment timeline for this method 

on our robots is currently undetermined. 

Furthermore, in addition to the aforementioned actions, our robots engage in simultaneous 

communication via the Robot Operating System (ROS), exchanging field information such as the 

ball and player locations. 


