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Abstract— Robots can learn to do complex tasks in simula-
tion, but often, learned behaviors fail to transfer well to the real
world due to simulator imperfections (the “reality gap”). Some
existing solutions to this sim-to-real problem, such as Grounded
Action Transformation (GAT), use a small amount of real-world
experience to minimize the reality gap by “grounding” the
simulator. While very effective in certain scenarios, GAT is not
robust on problems that use complex function approximation
techniques to model a policy. In this paper, we introduce Rein-
forced Grounded Action Transformation (RGAT), a new sim-to-
real technique that uses Reinforcement Learning (RL) not only
to update the target policy in simulation, but also to perform
the grounding step itself. This novel formulation allows for end-
to-end training during the grounding step, which, compared to
GAT, produces a better grounded simulator. Moreover, we show
experimentally in several MuJoCo domains that our approach
leads to successful transfer for policies modeled using neural
networks.

I. INTRODUCTION

In reinforcement learning (RL), the sim-to-real problem
entails effectively transferring behaviors learned in simu-
lation to the real world. Often, learning directly on the
real world can be too time-consuming, costly, or dangerous.
Using a simulator mitigates these issues, but simulators
are often imperfect models, leading to learned policies that
are suboptimal or unstable in the real world. In the worst
cases, the simulated agent learns a policy that exploits an
inaccuracy in the simulator—a policy that may be very
different from a viable real world solution.

A promising paradigm for addressing the sim-to-real prob-
lem is that of Grounded Simulation Learning (GSL) [1], in
which one seeks to modify (i.e., ground) the simulator to
better match the real world based on data from the real world.
If the internal parameters of the simulator cannot be easily
modified (as is often the case in practice), the state-of-the-
art grounding approach is Grounded Action Transformation
(GAT) [2]. GAT performs grounding not by modifying the
simulator, but rather by augmenting it with a learned ac-
tion transformer that seeks to induce simulator transitions
that more closely match the real world. Hanna and Stone
demonstrate that GAT can transfer a bipedal walk from a
simulator to a physical NAO robot. The complex dynamics
involved with a multi-actuated robot walking on soft carpet
make it very difficult to create an accurate simulator for
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the domain. Whereas training in simulation without GAT
produces a highly unstable real-world policy, the parameters
learned with GAT produced the fastest known stable walk on
the NAO robot [2].

In parallel to development in the sim-to-real space, there
has been an explosion of interest in using deep neural
networks to represent RL policies. Successes of Deep RL
include milestone achievements such as mastering the game
of Go [3] and solving a Rubik’s cube with one robotic hand
[4]. In the robotic motion domains that we consider in this
work, deep learning is a key component of most leading RL
algorithms such as Trust Region Policy Optimization (TRPO)
[5], Proximal Policy Optimization (PPO) [6], and Soft Actor
Critic (SAC) [7].

Unfortunately, trying to combine deep RL with sim-to-
real solutions has proven difficult, which limits the policy
representations possible for sim-to-real problems. In GAT [2],
the policy learned was optimized over sixteen parameters.
The number of parameters of a neural network are many
orders of magnitude higher. We find that trying to use
GAT with neural network policies often fails to produce
transferable policies (see Section IV-C). We hypothesize that
this poor performance is due to imprecision in the grounding
step and that learning the action transformer end-to-end can
improve transfer effectiveness.

To test this hypothesis, we introduce Reinforced Grounded
Action Transformation (RGAT), a new algorithm that modifies
the network architecture and training process of the action
transformer. We find that this new grounding algorithm
produces a more precise action transformer than GAT with
the same amount of real-world data. We perform simulation
experiments on OpenAI Gym MuJoCo domains, using a
modified simulator as a surrogate for the real world. Using a
simulated surrogate for the real world enables comparison
of our sim-to-real approach with training directly on the
“real” world, which is often not possible on real robots.1 We
find that RGAT outperforms GAT at transferring policies from
sim to “real” when using policies represented as deep neural
networks, and matches the performance of an agent that is
trained directly on the “real” environment, thus confirming
our hypothesis.

1Of course, doing so comes with the risk that the methods developed may
not generalize to the real world. In this paper, we focus on developing a
novel training methodology for learning in simulation. Conducting extensive
evaluation of this approach is only possible with a surrogate real world.
Evaluating RGAT on real robots is an important direction for future work.



II. BACKGROUND

Motivated by increasing interest in employing data-
intensive RL techniques on real robots, the sim-to-real prob-
lem has recently received a great deal of attention. Sim-
to-real is an instance of the transfer learning problem. As
we define it, sim-to-real refers to transfer between domains
where the transition dynamics differ and the rewards are
the same. Note that with this formalism, it is not strictly
necessary for the sim domain to be virtual nor for the
real domain to be physical.2 This section summarizes the
existing sim-to-real literature and specific literature from
reinforcement learning related to our proposed approach.

A. Related Work

The sim-to-real literature can be broadly divided into two
categories of approaches. Methods in the first category seek
to learn policies robust to changes in the environment. In
applications where the target domain is unknown or non-
stationary, these methods can be very useful. Dynamics
Randomization adds noise to the environment dynamics,
which has led to success in finding robust policies for robotic
manipulation tasks [8]. While this work uses noise injected
at random to modify the environment, Robust Adversarial
Reinforcement Learning (RARL) uses an adversarial agent
to modify the environment dynamics [9]. Using a different
paradigm, meta-learning attempts to find a meta-policy which
can be learned in simulation and then can quickly learn an
actual policy on the real environment [10].

Methods in the second category, which we refer to as
grounding methods, seek to improve the accuracy of the
simulator with respect to the real-world. Unlike the robust-
ness methods, these methods have a particular target real-
world domain and usually require collecting data from it. We
can think of grounding methods as strategies to correct for
simulator bias, whereas the robustness methods only correct
for simulator variance. System identification type approaches
try to learn the exact physical parameters of the system—
either through careful experimentation as done with the
Minitaur robot [11] or through more automated methods of
system identification like TuneNet [12]. Often, these methods
require alternating between improving the simulator and
improving the policy as in Grounded Simulation Learning
[1]. Our approach follows this basic format, but unlike these
methods (and like GAT [2]), we do not assume that we
have a parameterized simulator that we can modify. Neural-
Augmented Simulation (NAS) takes a similar approach to
GAT but uses a different neural architecture [13].

GAT achieved remarkable success on a challenging do-
main; however, there has not been much work applying it
to different domains. Our approach improves upon the GAT
algorithm to overcome some of its limitations.

2Indeed in transfer learning terminology, the sim and real domains would
be called source and target domains respectively. In this paper, we will
primarily use “sim” and “real.”
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Fig. 1: Diagram of the GAT training process [2], showing how the
forward model, freal, and the inverse model, f−1

sim, transform the
action, at, before it passes to the simulator. Everything below the
agent/env boundary is considered the grounded simulator.

B. Preliminaries

Formally, we treat the sim-to-real problem as a rein-
forcement learning problem [14]. The real environment is
a Markov Decision Process (MDP). At each time step, t, the
environment’s state is described by st ∈ S. The agent sam-
ples an action, at ∈ A, from its policy, at ∼ π(·|st). The en-
vironment then produces a next state: st+1 ∼ Treal(·|st, at),
where Treal is the transition probability distribution. The
agent also receives a reward, rt+1 ∈ R, from a known
function of the action taken and the next state: rt+1 =
R(at, st+1). In the controls literature, this is often called
a cost function (which is a negative reward function). The
discount factor γ ∈ [0, 1] controls the relative utility of near-
term and long-term rewards. The RL problem is to find a
policy, π, that maximizes the expected sum of discounted
rewards: Σ∞t=0γ

tR(at, st+1)
The simulator is an MDP that differs only in the transition

probabilities, Tsim. The sim-to-real objective is to maximize
the expected return for the RL problem while minimizing the
number of time steps evaluated on the real MDP. The tradeoff
between these objectives depends on the specific application.

C. Grounded Action Transformation (GAT)

The GSL framework [1] consists of alternating between
two steps, called the grounding step and the policy im-
provement step. During the grounding step, the target policy,
π, remains frozen while the simulator is improved, and,
during the policy improvement step, the grounded simulator
is fixed, making this step a standard RL problem. The policy
improvement step is done entirely in the grounded simulator.
GSL continues alternating between these steps until the
policy performs well on the real environment.

GAT [2] introduced a particular way of grounding the
simulator which treats the simulator as a black box. The
grounding step for GAT is as follows:

1) Evaluate the current policy on both environments and
store trajectories, {s0, a0, s1, a1, ...} as τreal and τsim.

2) Using supervised learning, train a forward model of
the dynamics, freal : S × A → S ′, from the data in
τreal. This model—usually a neural network—learns



Algorithm 1 Reinforced Grounded Action Transformation
Input: initial parameters θ, φ, and ψ for target policy
πθ, action transformer policy gφ, and forward dynamics
model fψ; policy improvement methods, optimize1 and
optimize2

1: while policy πθ improves on real do
2: Collect real world trajectories

τreal ← {((s0, a0), s1), ((s1, a1), s2), ...}real
3: Train forward dynamics function fψ with τreal
4: Update gφ in simulation by using optimize1 and

reward, rt = −||fψ(st, at)− st+1||2
5: Update πθ in simulation using optimize2 and the

reward from the grounded simulator
6: end while

a mapping from (st, at) to the maximum likelihood
estimate of the next state observation, ŝt+1.

3) Similarly, train an inverse model, f−1sim : S × S ′ → A
from τsim. This model is a mapping from two states,
(st, st+1), to the action, ât, that is most likely to
produce this transition in the simulator.

4) Compose the forward and inverse models to form the
action transformer, g(st, at) = f−1sim(st, freal(st, at)).

During the policy improvement step, the reward is still
computed explicitly as R(at, st+1). A block diagram of the
grounded simulator for GAT is shown in Fig. 1. When the
action transformer is prepended to the simulator, the resulting
grounded simulator produces a next state, st+1, that is closer
to the next state observed in the real world. Thus, if we learn
a policy on a good grounded simulator, the policy will also
perform well on the real world.

III. REINFORCED GROUNDED ACTION
TRANSFORMATION (RGAT)

In our experiments, we find that GAT produces a very
noisy action transformer (see Section IV-A). We hypothesize
that this noise is due to the composition of two different
learned functions—since the output of freal is the input to
f−1sim, errors in freal are compounded with the errors in f−1sim.
To reduce these errors, we introduce Reinforced Grounded

Action Transformation (RGAT), an algorithm that trains the
action transformer end-to-end. Since there is no straightfor-
ward supervisory signal that can be used to train the action
transformer, we propose to learn the action transformer using
reinforcement learning. In RGAT, we learn a single action
transformation function for g as opposed to learning freal
and f−1sim separately. Training the action transformer as a
single neural network also allows us to learn the change in
action, ∆at = ât − at, rather than the transformed action
directly. If the simulator is realistic, then the values of ∆a
will be close to 0 indicating no change is required; however,
the values for â span the whole action space. Thus, this
change has a normalizing effect on the output space of the
neural network, which makes training easier.

Our experiments show that RGAT produces more precise
action transformers than GAT while using the same amount
of real world data. In this approach, we treat the grounding
step as a separate RL problem. Like GAT, RGAT first uses
supervised learning to train a forward model, fψ , parameter-
ized by ψ; however, unlike GAT, fψ is not part of the action
transformer. This forward model gives a prediction of the
next state fψ(st, at) = ŝt+1, which is used to compute the
reward for the action transformer.

Here, we model the action transformer as an RL agent
with policy gφ with parameters φ. We will call this the
action transformer policy to distinguish it from the target
policy, the policy of the behavior learning agent we wish
to deploy on the real world. This agent observes the state,
st, and the action taken by the target policy, at = πθ(st).
Therefore, the input space for the action transformer policy
is the product of the state and action spaces of the target
policy SAT = S × A. The output of the action transformer
policy is a transformed action, so the action space remains
the same AAT = A. Since there are two different RL
agents with different objectives, they have different reward
functions. The reward for the target policy is provided by
the grounded simulator whereas the reward for the action
transformer policy is determined by the closeness of the
transition in the grounded simulator to the real world. At each
time step, the actual next state from the grounded simulator
is compared to the next state predicted by the forward model
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Fig. 2: Diagram of the two steps of the proposed RGAT algorithm. Note that the outer loop is the same in both steps, but only the policy
on the Agent side is updated during the Policy Improvement and Grounding step.



Fig. 3: Transformed action vs original action in a sim-to-self
experiment on the InvertedPendulum environment—learned using
GAT (left) and RGAT (right) algorithms. The black line shows
the fixed points of the action transformer. RGAT has much lower
variance than GAT.

and the action transformer is penalized for the difference with
the per step reward RAT (ŝt+1, st+1) = −||ŝt+1− st+1||2 =
−||fψ(st, at)− st+1||2.

That is, the reward is the negative L2 norm squared
between expected next state and actual next state. The dif-
ference between training the two different policies is shown
in Fig. 2. Note that the outer loop in both are exactly the
same. The blocks are just rearranged to make the agent–
environment boundary clear. Fig. 2b also shows the forward
model that is used to compute RAT . This block is missing
from Fig. 2a since the target policy’s reward is provided by
the grounded simulator.

IV. EXPERIMENTS
We designed experiments to test our hypotheses that

training the action transformer end-to-end improves the
precision of the action transformer and that this improved
precision improves sim-to-real transfer. First we compare the
precision of the action transformations by examining how
individual actions are transformed on the InvertedPendulum
domain (Section IV-A). We then compare how well the
policies learned using both algorithms transfer to the “real”
world by evaluating their performance on the real domain
(Section IV-C). We use a modified simulator to act as a
surrogate for the real world. For these experiments, we use
the MuJoCo continuous control robotic domains provided
by OpenAI Gym [15]. We evaluate RGAT on three differ-
ent MuJoCo environments—InvertedPendulum-v2, Hopper-
v2 and HalfCheetah-v2. InvertedPendulum is a simple en-
vironment with a four dimensional continuous state space
and a one dimensional continuous action space. Both Hop-
per and HalfCheetah are relatively complex environments
with high-dimensional state and action spaces compared to
InvertedPendulum, and their dynamics are more complex
due to presence of friction and contact forces. We use an
implementation of TRPO from the stable-baselines library
[16] for both optimize1 and optimize2 of Algorithm
1.

A. Sim-to-Self Experiments

To test the precision of an action transformer, we first
apply both the GAT and RGAT algorithms to settings where

Fig. 4: Transformed action vs original action in a sim-to-real
experiment on the InvertedPendulum environment—learned using
RGAT, where the real pendulum is heavier (left) or lighter (right)
than the simulated pendulum. The black line shows the fixed points
of the action transformer.

the sim and real domains were exactly the same. Ideally,
during the grounding step, the action transformer should
learn not to transform the actions at all. This effect is easy
to visualize for InvertedPendulum, since the action space is
one dimensional. Fig. 3 shows the transformed action versus
the input action after one grounding step for GAT and RGAT.
The black line shows the points where the transformed action
is the same as in the input action. From the figure, we can
see that RGAT produces a better action transformer, since the
dots lie much closer to the black line. The transformer for
GAT has a wider distribution with a bias toward the black
line.

B. Policy Representation

Consistent with Hanna and Stone [2], we find that GAT
works well on transferring policies where the policy repre-
sentation is low dimensional. When we use a shallow neural
network for the target policy—one hidden layer of four
neurons—GAT and RGAT have very similar performance. We
run ten trials of both algorithms, evaluating the performance
on the “real” environment after each policy improvement
step. Fig. 5a shows the mean return over ten grounding steps
for both algorithms. For reference, we compare the results
to a policy trained only in simulation (red line), and a policy
that is allowed to train directly on real until convergence
(green line). For easier comparison between domains, the y-
axis is normalized so the red and green baselines lie at 0 and
1 respectively.

We then repeat that experiment using a deeper network—
a fully connected neural network with two hidden layers of
64 neurons. The sim-to-real experiment results on Inverted-
Pendulum is shown in Fig. 5b. GAT fails to transfer a policy
from sim to “real”, as was discussed in the previous sections.
However, RGAT receives close to the optimal reward even
with a high-dimensional policy representation.

C. Sim-to-“Real” Experiments

Similar to the action transformation visualizations shown
in Section IV-A, we can visualize the transformations for
the sim-to-real case. Fig. 4 shows the action transformation



(a) Shallow Network (b) Deep Network

Fig. 5: Average performance of RGAT and GAT over ten grounding steps for InvertedPendulum. The real pendulum has a mass of 100
units. The shaded region shows std err over ten trials. In the shallow network case (a), both algorithms do well, but in the deep network
case (b), GAT fails to reach optimal performance.

Fig. 6: Average performance of RGAT and GAT over twenty
grounding steps for HalfCheetah. The “real” HalfCheetah’s torso
is 15% heavier than the sim HalfCheetah. The shaded region shows
std err over ten trials. RGAT outperforms GAT, but both algorithms
eventually reach the optimal reward.

graphs for two different InvertedPendulum “real” world en-
vironments. On the left, the “real” pendulum has a greater
pendulum mass than the simulated pendulum. Therefore, the
magnitude of the actions decreases—a weaker force on the
lighter pendulum has the same effect as a stronger force on
the heavier pendulum. If the real pendulum is lighter, the
opposite happens, as is shown in the figure on the right.

Note that the action transformer takes both the state and
action as input, so the same input action could be transformed
to different output action depending on the state. Thus, this
effect accounts for some of the variance in Fig. 4, whereas
in Fig. 3 the variance is only due to modeling error.

To further test the effectiveness of RGAT, we repeat the
experiment from Fig. 5b on the HalfCheetah and Hopper
domains. The target policy architecture is the same as in
Fig. 5b. For these domains, using shallower networks is not

Fig. 7: Average performance of RGAT and GAT over ten grounding
steps for Hopper. The “real” Hopper’s torso is 27% heavier than
the sim Hopper. The shaded region shows std err over ten trials.
Here, GAT barely improves upon the baseline. RGAT quickly reaches
the green line in three grounding steps.

an option, because lower capacity networks fail to learn good
policies, even when trained directly on the real domain.

We chose the mass for the “real” environments based on
the analysis from the RARL paper [9]. Changing the physical
parameters of the robot results in different transition dynam-
ics, which acts as our surrogate for the “real” environment;
however in certain cases, it can make the task much easier
or harder. We thus verify that an agent trained directly on
the modified environment reaches the same optimal return
as is expected on the original domain. Therefore, if a policy
performs poorly on the modified simulator, we know this is
because of poor transfer and not because the task is harder.

Figs. 5a, 5b, 6, and 7 show plots comparing the per-
formance of GAT and RGAT. In all of these experiments,
RGAT performs significantly better than GAT and performs
as well as a policy trained directly on the ”real” domain



(green line). For comparison, the green lines on these plots
show the performance of a policy trained directly on the real
environment for up to ten million timesteps of experience.

D. Hyperparameters

Using TRPO as the grounding step optimizer introduces a
new set of hyperparameters for the algorithm. The parameters
we found to be most critical to the success of the algorithm
were the maximum KL divergence constraint and the entropy
coefficient. We found that if the action transformer policy
changed too much during a single grounding step, then the
target policy often failed to learn. Thus, the maximum KL
divergence should be small, but not so small that the policy
cannot change at all. The entropy coefficient should be large
enough to ensure exploration. In our experiments, we set
the max KL divergence constraint value to 1e-8 and entropy
coefficient to 1e-5.

The discount factor for the action transformer, γAT , is an
additional hyperparamter we can control. Since the action
transformer in RGAT is an RL agent, it may pick suboptimal
actions at the present step to get a higher reward in the
future. In this sense, the action transformer tries to match
the whole trajectory instead of just individual transitions.
Setting γAT = 1 leads to matching the entire trajectory, and
setting γAT = 0 causes the learner to only look at individual
transitions. In our experiments, we set γAT to 0.99.

V. DISCUSSION AND FUTURE WORK

The experiments reported above confirm our hypotheses
that learning the action transformer end-to-end improves
its precision (Section IV-A) and that policies learned using
RGAT transfer better to the “real” world than policies learned
using GAT (Section IV-C). When the target policy network is
shallow, the difference between the algorithms is less notice-
able, but when the network capacity increases, inaccuracies
in the action transformer have a greater effect.

In Fig. 7, the target policy trained using RGAT quickly
improves over the first three grounding steps, but then, the
policy gradually drops in performance with every grounding
step. One possible explanation is that once the target policy is
near optimal, the data collected during the grounding step is
less suitable for learning a good action transformer; however
more experiments are needed to test this hypothesis.

Having demonstrated success in transferring between sim-
ulators and having analyzed in detail the scenarios in which
RGAT outperforms GAT, the next important step in this
research is to validate RGAT on physical robots.

VI. CONCLUSION

This paper introduced Reinforced Grounded Action Trans-
formation (RGAT), a novel algorithm for grounded simu-
lation learning. We investigate why GAT fails to learn a
good action transformer and improve upon GAT by learning
an action transformer end-to-end. RGAT is able to learn
a policy for grounding a simulator, using limited amount
of experience from the target domain, and our method is
compatible with existing deep RL algorithms, such as TRPO.

We experimentally validated RGAT’s sim-to-real performance
on the InvertedPendulum, Hopper and HalfCheetah environ-
ments from MuJoCo, and we showed empirically that within
a few grounding steps, RGAT can produce a policy that
performs as well as a policy trained directly on the target
domain.
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