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Abstract— Robot control policies learned in simulation do
not often transfer well to the real world. Many existing
solutions to this sim-to-real problem, such as the Grounded
Action Transformation (GAT) algorithm, seek to correct for—
or ground—these differences by matching the simulator to
the real world. However, the efficacy of these approaches is
limited if they do not explicitly account for stochasticity in
the target environment. In this work, we analyze the prob-
lems associated with grounding a deterministic simulator in a
stochastic real world environment, and we present examples
where GAT fails to transfer a good policy due to stochastic
transitions in the target domain. In response, we introduce the
Stochastic Grounded Action Transformation (SGAT) algorithm,
which models this stochasticity when grounding the simulator.
We find experimentally—for both simulated and physical target
domains—that SGAT can find policies that are robust to
stochasticity in the target domain.

I. INTRODUCTION

Learning robot control policies in simulation [1] is typi-
cally safer, cheaper, and faster than learning in the real world,
but it also introduces a reality gap [2] between the training
environment (the simulator) and the deployment environment
(the real world). Sim-to-real algorithms, which focus on
overcoming this gap, have recently received a great deal of
attention.

This paper focuses on a class of solutions referred to as
grounding algorithms [3] which use a small amount of real
world data to improve (or ground) the simulator. We can
assume that the ungrounded simulator at least approximates
the correct real world dynamics, so, many grounding ap-
proaches [3], [4], [5], [6] learn parameters to correct for
these differences. Since it may not always be feasible to
modify the internal parameters of a simulator, we focus our
attention on grounding algorithms that treat the simulator as
a black-box, such as the Grounded Action Transformation
(GAT) algorithm [6].

In most robotics domains, the dynamics are often best
modeled as stochastic processes due to effects like friction,
gear backlash, uneven terrain, and other sources of noise
in the environment; however many earlier approaches for
sim-to-real do not explicitly account for stochasticity in the
real world. These approaches learn a single value for the
correction terms when learning a distribution would more
accurately reflect the real world.
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We hypothesize that accounting for the presence of
stochasticity in the real world improves sim-to-real transfer
of policies learned in simulation. In this work, we analyze
the effects of target environment stochasticity in the sim-to-
real problem. We show several domains where GAT fails to
adequately ground the simulator, and we propose a new algo-
rithm, Stochastic Grounded Action Transformation (SGAT),
that handles this issue gracefully by learning the stochasticity
in the environment. We first show on the Cliff Walking
domain that a policy learned using SGAT achieves better
mean returns than GAT on the target environment. We further
conduct sim-to-“real” transfer experiments on OpenAI gym
MuJoCo environments InvertedPendulum and HalfCheetah,
using a modified version of the environment as a surrogate
for the real world.

To test the efficacy of SGAT in handling real world
stochasticity, we set up a sim-to-real experiment where a
NAO humanoid robot learns to walk on uneven ground. Con-
firming our hypothesis, we indeed found that policies learned
with SGAT, unlike those learned by GAT, learned to cope with
environment stochasticity leading to better performance in
the real world. Using SGAT, the NAO completed the course
9 out of 10 times (Fig. 1), whereas with GAT, it fell down
every time.

II. BACKGROUND

In this section, we review existing literature on state-
of-the-art sim-to-real algorithms that are relevant to our
approach, and we formalize the problem addressed in this
paper.

A. Related Work

In the past, many sim-to-real techniques [4], [7], [8],
[9], [10], [11] have achieved policy learning for the real
world using a simulator. We can roughly divide these tech-
niques into black-box techniques (which do not modify
the simulator internally) and white-box techniques (which
do). Another useful distinction is robustness methods vs.
grounding methods.

Robustness methods learn a policy on the simulator that
is robust to variations in the environment. Dynamics Ran-
domization (DR) is a relatively simple approach that has
been shown to be successful at robot control tasks. Peng
et al. [7] introduce a white-box DR algorithm that can learn
robust RL control policies for robotic manipulation tasks. DR
approaches where the effect of actuators (actions) or sensor
information (observations) are perturbed with an “envelope”
of noise can be considered black-box approaches [8], [9],



Fig. 1: Experiment setup showing a robot walking on the uneven ground. The NAO begins walking 40 cms behind the center of the circle
and walks 300 cms towards the white penalty cross. This image shows a successful walk executed by the robot at 2 sec intervals, learned
using the proposed SGAT algorithm.

[10]. Other DR methods where the internal simulation pa-
rameters are perturbed fall under white-box approaches [4],
[7], [12], [13]. Robust Adversarial Reinforcement Learning
(RARL) [14] randomizes the training environment using an
adversary to incorporate robustness into the policy. While
DR methods randomly sample simulation parameters before
a trajectory is generated, the trajectory is still generated from
a deterministic simulator. Our approach models real world
stochasticity during individual state transitions.

Orthogonal to robustness methods are approaches that
focus on grounding a simulator to behave like a target real
world environment. Unlike DR methods that learn a more
general robust policy to perform well in any environment,
grounding methods learn a policy in a grounded simulator
to optimize performance in that specific target environment.
Grounded Simulation Learning (GSL) [3] is a learning frame-
work in which data from the real world is used to modify
(ground) the simulator. After this grounding step, transitions
in the grounded simulator look similar to transitions in the
real world environment, hence minimizing the “reality gap”.
In GSL, all of the learning happens in the simulator; the robot
is used only to evaluate policies and to collect transition
data [3], [6]. Farchy et al. [3] demonstrate its success at
transferring a walk policy from a simulated NAO in the
SimSpark simulator to a real SoftBank NAO and achieved
26.7% faster walk than baseline methods.

Based on the GSL framework, the algorithm Grounded
Action Transformation (GAT) [6] was introduced recently
by Hanna and Stone. Like GSL, GAT grounds the simulator
with data from both the real world and the simulator. Policy
learning happens only in the grounded simulator; interaction
with the real world is required only to evaluate policies and
to collect data for grounding the simulator. GAT is a black-
box approach to sim-to-real. GAT was experimentally shown
to be effective at learning a fast walk policy by grounding
a high fidelity simulator, which when deployed in the real
world achieved the fastest known walk on the NAO robot:
over 43% faster than the state-of-the-art handcoded gait upon
which it was based.

B. Preliminaries

We consider the real world (real) and simulation (sim)
domains to be two different Markov Decision Processes

(MDPs) [15], Mreal and Msim respectively. An MDP com-
prises a set of states, S, a set of actions, A, the transition
dynamics associated with those actions, T , and a reward
function, R. At each time step, t, an agent observes the
current state, st ∈ S, and chooses an action, at ∈ A, sampled
from its policy, at ∼ π(·|st). For a given state and action,
there is a distribution of possible next states, from which
the environment samples a state—st+1 ∼ T (·|st, at). The
reward, in this work, is a function of the action and the next
state, rt+1 = R(at, st+1).

In our formulation of the sim-to-real problem, only the
transition dynamics Tsim and Treal differ between the en-
vironments. Furthermore, we only consider deterministic
simulators in this work, but the real environment may have
stochastic transitions. The reinforcement learning (RL) ob-
jective is to find a policy that maximizes the expected sum
of rewards on the real domain, E[

∑T
t=0R(at, st+1)].

C. Grounded Action Transformation (GAT)

GAT follows the GSL framework where one alternates
between a grounding step and a policy improvement
step. During the grounding step, the policy remains un-
changed and is deployed on both sim and real environ-
ments to collect state transition data. The GAT algorithm
trains two neural networks—a deterministic forward model
ŝt+1 = freal(st, at) and an inverse dynamics model ât =
f−1
sim(st, st+1) of the real and sim environments respectively,

using supervised learning. The learned forward and inverse
models are composed to form the action transformer function
g(st, at) = f−1

sim(st, freal(st, at)) that grounds the simulator.
The inputs to the action transformer are the current state, st,
and the action chosen by the agent, at ∼ π(·|st). The output
is a transformed action, ât, that when taken in the simulator,
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Fig. 2: GAT Diagram[6]
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Fig. 3: For a deterministic domain, the forward model (blue) and
the inverse model (red) can make the grounded simulator behave
like the real world. GAT works well here.

produces a transition similar to the expected transition when
executing at in the real world. The combination of the
action transformer and the original simulator is known as
the grounded simulator. The grounding step is followed by
a policy improvement step, in which the parameters of the
action transformer are fixed. Thus, the policy improvement
step is a standard reinforcement learning problem in the
grounded simulator. These two steps are repeated until the
optimized policy performs well on the real environment.
The block diagram depicting the GAT framework is shown
in Fig. 2. While GAT works well on fairly deterministic
environments, as was shown by Hanna and Stone [6], in
our experimentation, we find that policies learned using
GAT perform poorly when transferring to highly stochastic
environments.

D. Transferring to a stochastic real world

When the real world domain is deterministic, learning a
deterministic forward model, as GAT does, works well. We
use a toy example to demonstrate how it works. Consider
the environments shown in Figs. 3a and 3b. The agent starts
in the initial state, s0, and chooses between a1 and a2.
In the simulator, a1 leads to the higher reward of +1, but
the transitions are flipped in reality. Hence, the action a2
is the optimal action. The GAT action transformer learns to
transform a1 into a2 and a2 into a1. Thus from the agent’s
perspective the grounded simulator behaves like the real
world.

However, when we add stochastic transitions, the two
diagrams do not match. In Fig. 4, the optimal action in the
simulator is a3 and in the real world it is a2; however, in
the grounded simulator, it is a1. Since GAT’s forward model
is deterministic, it predicts only the most likely next state,
whereas other less likely transitions are also important when
computing an action’s value.

III. STOCHASTIC GROUNDED ACTION
TRANSFORMATION (SGAT)

To address real world stochasticity, we introduce Stochas-
tic Grounded Action Transformation (SGAT), which learns a
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Fig. 4: When the real world has stochastic transitions, the GAT
forward model (blue) only captures the most likely next state. GAT
may fail here, since the grounded simulator behaves very differently
from the real environment.
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â3

s1 +1

s2 -1

s3 +10

Fig. 5: In the SGAT Grounded Simulator, the transitions match the
real environment (Fig. 4b).

stochastic model of the forward dynamics. In other words,
the learned forward model, freal, predicts a distribution
over next states, from which we sample, rather than the
most likely next state. The sampling operation within the
action transformer makes the overall process stochastic.
Even though the original simulator is deterministic, the
action passed to the action transformation function will not
necessarily produce a deterministic effect. Fig. 5 illustrates
the simulator from Fig. 4 grounded using SGAT. Since the
forward model accounts for stochasticity in the real world,
the actions on the grounded simulator have the same effect
as the real world.

In continuous state and action domains, we model the
next state as a multivariate Gaussian distribution and train
the forward model using negative log likelihood (NLL) loss
L = − log p(st+1|st, at). Similar to GAT, we use a neural
network function approximator with 2 fully connected hidden
layers of 64 neurons to represent the forward and inverse
models, but unlike GAT, the forward model in SGAT outputs
the parameters of a Gaussian distribution from which we
sample the predicted next state.1 In our implementation, the
final dense layer outputs the mean, µ, and the log standard

1A Mixture Density Network might be more suitable when the environ-
ment’s transition dynamics exhibit multimodal behavior.



Algorithm 1 Stochastic Grounded Action Transformation
Input: initial parameters θ0, φ, and ψ for the pol-
icy πθ, forward dynamics model fφreal

and inverse
dynamics model f−1

ψsim
; policy improvement method,

optimize

1: while policy πθ improves on real do
2: Collect real world trajectories

τreal ← {((s0, a0), s1), ((s1, a1), s2), ...}real
3: Train forward dynamics function fφ with τreal, using

the NLL loss L = −log p(st+1|st, at).
4: Collect simulated trajectories

τsim ← {((s0, a0), s1), ((s1, a1), s2), ...}sim
5: Train inverse dynamics function f−1

φ with τsim, using
mean squared error loss.

6: Update πθ on the grounded simulator using
optimize and the reward from the grounded
simulator

7: end while

deviation, log(σ), for each element of the state vector. The
complete algorithm of SGAT is shown in Algorithm 1.

IV. EXPERIMENTS

This section reports on an empirical study of transfer from
simulation with SGAT compared to GAT. We begin with a toy
reinforcement learning domain and progress to sim-to-real
transfer of a bipedal walking controller for a NAO robot. Our
empirical results show the benefit of modelling stochasticity
when grounding a simulator for transfer to a stochastic real
world environment.

A. Cliff Walking

We verify the benefit of SGAT using a classical reinforce-
ment learning domain, the Cliff Walking grid world shown in
Fig. 6. In this domain, an agent must navigate around a cliff
to reach a goal. The episode terminates when it either reaches
the goal (reward of +100) or falls into the cliff (reward of
−10). There is also a small time penalty (−0.1 per time step),
so the agent is incentivized to find the shortest path. There is
no discounting, so the agent’s objective is to maximize the
sum of rewards over an episode. The agent can move up,
down, left, or right. If it tries to move into a wall, the action
has no effect. In our version of the problem, we assume we
have a deterministic simulator, but in the “real” environment,
there is a small chance at every time step that the agent
moves in a random direction instead of the direction it chose.

Fig. 7 shows GAT and SGAT evaluated for different values
of the environment noise parameter. Both the grounding
steps and policy improvement steps (using policy iteration
[15]) are repeated until convergence for both algorithms. To
evaluate the resulting policy, we estimate the expected return
from averaging 10,000 episodes. At a value of zero, the
“real” environment is completely deterministic. At a value
of one, every transition is random. Thus, at both of these
endpoints, there is no distinction between the expected return
gained by the two algorithms.

Fig. 6: The agent starts in the bottom left and must reach the goal
in the bottom right. Stepping into the red region penalizes the robot
and ends the episode. The purple path is the most direct, but the
blue path is safer when the transitions are stochastic.

Fig. 7: The y-axis is the average performance of a policy evaluated
on the “real” domain. The x-axis is the chance at each time step
for the transition to be random. SGAT outperforms GAT for any
noise value. Error bars not shown since standard error is smaller
than 1 pixel.

For every intermediate value, SGAT outperforms GAT.
The policy trained using GAT is unaware of the stochastic
transitions, so it always takes the shortest and most dangerous
path. Meanwhile the SGAT agent models the stochasticity, so
it learns as if it were training directly on the real environment
in the presence of stochasticity.

B. MuJoCo domains

Having shown the efficacy of SGAT in a tabular domain,
we now evaluate its performance in continuous control
domains that are closer to real world robotics settings. We
perform experiments on the OpenAI gym MuJoCo envi-
ronments to compare the effectiveness of SGAT and GAT
when there is added noise in the target domain. We consider
the case with just added noise and the case with both
noise and domain mismatch between the source and target
environments. We call the former Sim-to-NoisySim and the
latter Sim-to-NoisyReal. We chose the InvertedPendulum and
HalfCheetah domains to test SGAT in environments with both
low and high dimensional state and action spaces. For policy
improvement, we use an implementation of Trust Region
Policy Optimization (TRPO) [16], from the stable-baselines
repository [17].

We simulate stochasticity in the target domains by adding



Fig. 8: Performance of best policies learned using GAT and SGAT
in a Sim-to-NoisyReal experiment on InvertedPendulum, averaged
over 10 trials. The “real” pendulum is 10 times heavier than the
sim pendulum. SGAT performs better than GAT as the stochasticity
in the target domain increases.

Gaussian noise with different standard deviation values to
the actions input into the environment. We omit the results of
Sim-to-NoisySim experiments for InvertedPendulum because
both algorithms performed well on the transfer task. Fig.
8 shows the performance of three different policies on
the “real” environment—the initial policy trained in the
ungrounded simulator, a policy trained in the grounded
simulator using GAT, and a policy trained in the grounded
simulator using SGAT. In this Sim-to-NoisyReal experiment,
SGAT performs much better than GAT when the stochasticity
in the target domain increases. Fig. 9 shows the same
experiment on HalfCheetah, both with and without domain
mismatch. In both Figs. 8 and 9, the returns are normalized
with respect to 1.0 being the best return a policy trained in the
“real” environment could achieve, and the error bars show
the standard error across 10 trials. While policies learned
using both algorithms are similar when the stochasticity is
minimal in the target domain, as the stochasticity increases,
SGAT policies perform better than those learned using GAT.

C. NAO Robot Experiments

Until this point in our analysis, we have used a modified
version of the simulator in place of the “real” world so as
to isolate the effect of stochasticity (as opposed to domain
mismatch). However, the true objective of this research is
to enable transfer to real robots, which may exhibit very
different noise profiles than the simulated environments.
Thus, in this section, we validate SGAT on a real humanoid
robot learning to walk on uneven terrain.

Our robot experiments were conducted on the SoftBank
NAO bipedal robot, used in the RoboCup robot soccer com-
petitions. For learning in simulation, we use the SimSpark
physics simulator, used in the RoboCup 3D Simulation
league. We compared GAT and SGAT by independently
learning control policies using these algorithms to walk on
uneven terrain, as shown in Fig. 1. To create uneven ground
in the lab, we placed foam packing material under the turf
of the robot soccer field. On this uneven ground, the walking

TABLE I: Speed and stability of NAO robot walking on uneven
ground. The initial policy θ0 walks at 14.66±1.65 cm/s and always
falls down. Both SGAT and GAT find policies that are faster, but
SGAT policies are more stable than policies learned using GAT.

Grounding Step 1 Grounding Step 2
Speed (cm/s) Falls Speed (cm/s) Falls

GAT 15.7± 2.98 6/10 18.5± 3.63 10/10
SGAT 16.9± 0.678 0/10 18.0± 2.15 1/10

dynamics become more random, since the forces acting on
the foot are slightly different every time the robot takes a
step. For the walk policy, we use the rUNSWift walk engine
and the initial published parameter set θ0, developed by
Ashar et al. [18]. This initial unoptimized policy achieves
a speed of 14.66 ± 1.65 cm/s on the uneven terrain. The
walk engine contains 16 parameters that we optimize on the
grounded simulator using Covariance Matrix Adaptation -
Evolutionary Strategy (CMA-ES), with a population size of
150. Each trajectory lasts for 7.5 seconds on the simulator or
terminates when the robot falls down. The reward function
is a sum of the forward velocity of the robot (in cm/s) and
an early termination penalty of -15 if the robot falls down.
Thus, CMA-ES optimizes the policy for walks that are faster
and more stable in the grounded simulator.

On flat ground, both methods produced very similar poli-
cies, but on the uneven ground, the policy learned using
SGAT was more successful than a policy learned using GAT.
We performed ten trial runs of the best policy learned using
SGAT and GAT after each grounding step, and the average
speed of the robot on the uneven terrain is shown in Table
I. The policy learned using SGAT takes shorter steps and
stays upright, thereby maintaining its balance on the uneven
terrain, whereas the policy produced using GAT learned to
lean forward and walk faster, but fell down more often
due to the uneven terrain. This result is best visualized
in the supplementary video attached with this paper. Both
algorithms produce policies that improve the walking speed
across grounding steps. The GAT policy after the second
grounding step always falls over, whereas the SGAT policy
was more stable and finished the course 9 out of 10 times.

V. DISCUSSION AND LIMITATIONS

In our experiments, we observe that stochastic transitions
can have a detrimental effect on how GAT grounds the
simulator; however both algorithms perform similarly on de-
terministic environments. In real world scenarios, we cannot
know how stochastic an environment is before testing. This
fact suggests that we should default to SGAT.

In this work, we have only considered deterministic sim-
ulators, but simulators may have stochastic transitions as
well, especially if the simulator was designed to anticipate
process noise. However, when using an action transformer
grounding approach, stochastic simulators make the learning
problem more difficult. We can no longer sample from the
distribution provided by the forward model. Instead, the
inverse model must take in a distribution over states and
output a distribution over actions.



(a) Sim-to-NoisySim (b) Sim-to-NoisyReal

Fig. 9: Performance of best policies learned using GAT and SGAT in the HalfCheetah domain, analyzed in Sim-to-NoisySim and Sim-to-
NoisyReal experiments. In the NoisyReal environment, the “real” HalfCheetah’s torso is 15% heavier than the sim HalfCheetah. When
the “real” environment is highly stochastic, SGAT performs better than GAT.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced Stochastic Grounded Ac-
tion Transformation (SGAT), a sim-to-real algorithm, which
gracefully handles policy learning in simulation when the
target domain is stochastic.

First, in Cliff Walking, we empirically showed that by
accounting for target domain stochasticity, SGAT policies can
produce much better average returns on the real environment
than GAT policies. Then, we compared the two algorithms on
two MuJoCo environments in Sim-to-NoisySim and Sim-to-
NoisyReal scenarios and showed that SGAT policies perform
better when the target environment is highly stochastic. To
verify the algorithm in a real world transfer setting, we
conducted an experiment in which a NAO humanoid robot
learns to walk over uneven terrain. The empirical results
indicate that SGAT policies are more robust to environmental
stochasticity and walk more robustly over the uneven terrain
compared to hand-coded polices and GAT policies.

Though we have focused on black-box techniques, these
ideas may apply to some white-box techniques as well. Many
sim-to-real algorithms are designed to find correct environ-
ment parameters, but the most accurate model might be one
in which these parameters are sampled from a distribution.
Investigating this scenario is a promising direction for future
work.
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