
Software Survey 2025

Team Name
Rhoban

Is your software fully or partially OpenSource. If so, where can it
be found:
Some parts are open-source
Not all of it, mostly because it represents a huge time investment to do it properly
Our tool for CAD-to-URDF conversion: https://onshape-to-robot.readthedocs.io/
Our internal quadratic programming based inverse kinematics library:
https://placo.readthedocs.io/
The URDF model of our robot is included in examples models here:
https://github.com/Rhoban/placo-
examples/tree/master/model

Our walk engine is featured as a demo:
https://github.com/Rhoban/placo-examples/blob/master/walk/walk.py

Recently, we also open-sourced FootstepsNet, our footsteps generator:
https://github.com/Rhoban/footstepnet_envs

Do you have a kinematic or dynamic model of your robot(s)? If so,
how did you create it (e.g. measure physical robot, export from
CAD model)?
We have an URDF model that is exported from our CAD model using Onshape-To-Robot
It includes robot geometry, dynamics, pure shape approximation for physics simulation,
and frames of interrest
https://onshape-to-robot.readthedocs.io/

Are you using Inverse Kinematics? If so what solution (analytic,
(pseudo)inverse jabcobian, etc...) are you using?
We use quadratic programming solver, which is equivalent to a regularized and
constrained pseudo-inverse.

We recently open-sourced and documented PlaCo, our library to achieve such
task-space inverse kinematics, some examples
(including an humanoid with few tasks) can be found here:
https://placo.readthedocs.io/en/latest/kinematics/examples_gallery.html

Are you simulating your robot? If so what are you using simulation
for?
We use 3D geometrical simulations to test/debug behaviours
We use dynamics simulation (pyBullet) to test/debug some motion
We use MuJoCo and Isaac for RL learning

What approach are you using to generate the robot walking
motion?
Footsteps planning are generated using reinforcement learning, trained against a
purely geometrical problem formulation
We then plan the center of mass trajectory using constrained optimization
Finally, the trajectories are injected in a whole body inverse kinematics solver

What approach are you using to generate motions for standing
up?
Standing up is based on manually tuned (piecewise linear) splines

We experimented on RL-based standing-up, which is open-source here:
https://github.com/Rhoban/frasa

Integrating this in the game behaviour is still ongoing work

What approach are you using to generate kicking motions?
Kicking motion is based on manually tuned (piecewise linear) splines

Do you use any other motions than the previously mentioned? If
so, what approaches are you using to generate them?
We have a separate analytical inverse kinematics for the head

Which datasets are you using in your research? If you are using
your own datasets, are they public?

We have a custom annotated images dataset for detection, it is currently not public

What approaches are you using in your robot's visual perception?
We use the end-to-end network YoloV8

Are you planning with objects in Cartesian or image space? If you
are using Cartesian space, how do you transform between the
image space and cartesian space?
We plan in Cartesian space
We performed cameras calibration using OpenCV Charuco board to obtain intrinsic
matrix
Extrinsic matrix is obtained using the kinematics model of the robot

Pixels then give you a ray that you can express in a world frame, which you can for
example intersect with the ground

How is your robot localizing?
The features detected with Yolo are fed to a custom particle filter.
Odometry (based on kinematics model and gyroscope integration) is extensively used
for particles mutation

Is your robot planning a path for navigation? Is it avoiding
obstacles? How is the plan executed by the robot (e.g. dynamic
window approach)?
The robots are planning path using A*. The footsteps are planned to aim at a point
further along the path

How is the behavior of your robot's structured (e.g. Behavior
Trees)? What additional approaches are you using?
Following the rules is currently mainly achieved by state machines.
Strategy is based on classical dynamic programming and tree search on simplified and
discretized version of the problem

Do you have some form of active vision (i.e. moving the robots
camera based on information known about the world)?
Yes, the camera stares at the ball most of the time by using kinematics model and the

estimated position of the ball in the world.
When the robot scans for localization information and look back at the ball, we use the
head inverse kinematics to look at the ball again.

Do you apply some form of filtering on the detected objects (e. g.
Kalman filter for ball position)?
We apply some form of filtering, but they are currently not very formal, mostly moving
averages with some heuristic to merge similar candidates.

Is your team performing team communication? Are you using the
standard RoboCup Humanoid League protocol? If not, why (e.g. it
is missing something you need)?
The robots are communicating using mostly protobuf serialized messages over UDP
broadcasts.
We didn't implement the standard RC Humanoid League Protocol, mostly for historical
reasons

Please list contributions your team has made to RoboCup
We co-organized the WHSR workshop: https://whsr-2024.github.io/

The following tools are open source and usable:
- Onshape-To-Robot CAD-to-URDF: https://onshape-to-robot.readthedocs.io
- PlaCo - Planning & Control: https://placo.readthedocs.io/en/latest/
- RL stand-up envs: https://github.com/Rhoban/frasa
- RL footsteps planning: https://github.com/Rhoban/footstepnet_envs

Please list the scientific publications your team has made since
the last application to RoboCup (or if not applicable in the last 2
years).
 FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning
and Forecasting (https://arxiv.org/abs/2403.12589)

 FRASA: An End-to-End Reinforcement Learning Agent for Fall Recovery and Stand Up of
Humanoid Robots (https://arxiv.org/abs/2410.08655)

 Extended Friction Models for the Physics Simulation of Servo Actuators
(https://arxiv.org/abs/2410.08650)

Please list the approaches, hardware designs, or code your team is
using which were developed by other teams.
N/A

What operating system is running on your robot and which
middleware are you using (for example Ubuntu 22.04 and ROS2
Galactic)?
We are running Ubuntu 22.04
We don't use ROS

Is there anything else you would like to share that did not fit to
the previous questions?

If you have additional materials you would like to show, please
link to them here.

