

Application of Inertial Measurement Unit For Humanoid Robot Stability

UC Product Design

Humayun Khan

UC ENGINEERING

Te Rāngai Pūkaha

UC®COMPUTER SCIENCE & SOFTWARE ENGINEERING

Who we are?

- Electric Sheep
- OpenSource platfrom:
 - https://github.com/electric-sheep-uc
- **Team members:**
 - University of Canterbury
 - Industry

Outline

- Introduction
- IMU Components
- Noise and Sensor bias
 - Grades of IMU
 - MEMs-based IMU used for RoboCup
- Raw IMU data to roll and pitch angle
- Case for Stability

Inertial Measurement Unit (IMU)

- A device that measures the acceleration and angular velocity of the body
- Applications:
 - Dead reckoning
 - Attitude and heading reference system
 - Inertial navigation
 - Robot stability

IMU components – Gyroscope

Gyroscope, rad/s

- MEMS-based,
- Mechanical
- Optical

[1] https://howtomechatronics.com

IMU components – Accelerometer

□ Accelerometer Type, m/s²

- MEMS-based
- Piezo-electric
- Piezo-resistive

Noise, Bias, and Scale Factor

Measured accelerometer value, a_m

 $a_{m} = M_{a}(S_{a}(a - a_{gravity}) - \beta_{a}(T))$ M_a = Accelerometer misalignment matrix $\beta_{a}(T) = Temperature varying biases$ $S_{a} = \begin{pmatrix} S_{ax} & 0 & 0 \\ 0 & S_{ay} & 0 \\ 0 & 0 & S_{ay} \end{pmatrix}$ □ Measured Gyro value, $\omega_m = M_g((S_g \omega_a) - \beta_g(T))$

Grades of IMUs - Gyroscope

Marine Grade
 Tactical Grade
 Industrial Grade
 Consumer Grade

Grades of IMUs – Accelerometer

MEMS IMU Vendors

- **Consumer Grade**
 - TDK Invensense
 - STMicroelectronics
 - Bosch

[8] https://invensense.tdk.com

[10] https://www.bosch-sensortec.com

- Industrial Grade
 - XSens, Analog Devices
 - VectorNav, Thales

10

Example: TDK Invensense MPU6500

□ Hardware Specification:

- Gyro modes: ±250, ±500, ±1000, ±2000° /sec
 Accelerometer Modes: ±2g, ±4g, ±8g, ±16 g
- Sampling frequency: 0.24 Hz to 500 Hz
- Hardware connection via I2C bus
- Connect to Arduino, Raspberry Pi, or any microprocessor with I2C bus

Setting up the MPU6500

Voltage, Vcc 3.3 V Ground 12C Clock I2C Data **External SPI Data** External SPI Clock **I2C Address Select** Interrupt SPI Chip Select Frame Synchronisation

Raw Data and Reference frame

COM13

	X	Y	Z
Accel:	0.211	6.685	-70.661
Gyro:	-0.004	0.020	0.009
Mag:	0.000	0.000	0.000
Temp:	22.614		
	Angle in Degrees		
Pitch:	0.170173		
Roll:	5.407133		

Accelerometer, Computing Euler angles

• Accelerometer: a_x , a_y , a_z , IMU with g in z-axis

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(-\theta_x) & -\sin(-\theta_x) \\ 0 & \sin(-\theta_x) & \cos(-\theta_x) \end{pmatrix} \begin{pmatrix} \cos(-\theta_y) & 0 & \sin(-\theta_y) \\ 0 & 1 & 0 \\ -\sin(-\theta_y) & \sin(-\theta_x) & \cos(-\theta_y) \end{pmatrix} \begin{pmatrix} \cos(-\theta_z) & -\sin(-\theta_z) & 0 \\ \sin(-\theta_z) & \cos(-\theta_z) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Roll,
$$\Phi_{xyz} = \tan^{-1}\left(\frac{a_y}{a_z}\right)$$

Pitch,
$$\theta_{XYZ} = \tan^{-1} \left(\frac{-a_x}{(a_y^2 + a_z^2)^{-0.5}} \right)$$

Gyroscope, Computing Euler angles

Gyroscope: ω_x , ω_y , ω_z and Δt Initial Orientation: i_x , i_y

Roll,
$$\Phi = i_x + \omega_x \times \Delta t$$

Pitch, $\theta = i_y + \omega_y \times \Delta t$

Sensor Fusion

- Complementary Filter
 - Fixed ratio
 - Accelerometer and Gyroscope
 - Pitch and Roll angles
- Kalman Filter
 - Change in weights based on computed covariance
 - Adaptable to dynamic changes

Robot Stability

- Suggestions for humanoid robot torso stability
 - Mounting IMU near to the center of mass
 - Orientation of the IMU
 - Sensing change is torso pitch and roll angle
 - Keeping a high sampling frequency
 - Non-linear control system

Conclusion

- **Effect** of temperature
- Removal of sensor biases
- Choice of sensor for humanoid robots
- Sensor fusion approaches
- Using Roll and Pitch to stabilise the robot

Questions