
RoboPatriots: George Mason University
2009 RoboCup Team

Keith Sullivan, Christopher Vo,
Brian Hrolenok, and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

{ksulliv2, cvo1, bhroleno, sean}@cs.gmu.edu

1 Introduction

The RoboPatriots are a team of three humanoid robots sponsored by George
Mason University. Each robot is built on a Kondo KHR-1HV humanoid base and
a customized Gumstix Verdex microcontroller. The two attackers share the same
behavior, and the goalie’s is different. At present there is minimal communication
between the robots, but this may change by the competition.

RoboCup 2009 provides an opportunity for the Autonomous Robotics Lab
at George Mason University to apply its expertise in evolutionary algorithms
to robotics. Our research goals in developing the RoboPatriots have focused on
three elements: first, we are interested in the multiagent coordination aspects of
the problem. Second, we are simplifying the design of robot motion behaviors by
gathering human motion data, then converting this data to the humanoid servos.
Third, we are optimizing these motion behaviors in a massively distributed evo-
lutionary computation system attached to a custom humanoid robot simulator
of our own devising.

2 Hardware

We are interested in embodied AI rather than hardware development. So, we
have chosen commercially available equipment to construct our robot. In par-
ticular, we choose the Kondo KHR-1HV as our robot base. Figure 1 shows the
hardware architecture and information flow between components. Each robot
has 20 degrees of freedom (DOF) controlled via servo motors. There are 6 DOF
per leg, 3 DOF per arm, and 2 DOF in the neck. The sixteen KRS-788HV digital
servos used in the arms and legs produce 10 kg-cm of torque at a speed of 0.14
sec. / 60 degrees. The two KRS-4024 servos in the shoulders produce 10.5 kg-cm
of torque at a speed of 0.17 sec. / 60 degrees. These servos are controlled via
the RCB-3 controller board. In addition, two KRG-3 single axis gyros connect
to the RCB-3.

The main processing is handled by a 600 MHz Verdex embedded computer
attached to a Robostix microcontroller [1]. The Verdex communicates with the
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Fig. 1. Hardware architecture and information flow between components

Robostix via I2C and with the RCB-3 via serial at 115200 bps. A custom inverter
board facilitates communication.

We replaced the stock head with a pan-tilt mount constructed from two
standard micro-servos and a CMUCam3 [2]. The pan-tilt servos are controlled
from the CMUCam3. The CMUCam3 communicates with the Verdex through
a serial bridge on the Robostix: data travels via I2C from the Verdex to the
Robostix, and from the Robostix to the CMUCam3 via serial at 115200 bps.

The CMUCam3 is an embedded vision system based on the NXP LPC2106
60 MHz processor and an Omnivision CMOS sensor. The RGB CMOS sensor has
CIF resolution (352x288), and operates at 26 frames per second. The CMUCam3
has an open-source API allowing customized software development.

The robots each have a 12 V, 2100 mAh battery. A power regulator board
ensures proper voltages to each component. Each robot is equipped with 802.11b
wireless.



Fig. 2. The ODE simulation of a RoboPatriot

3 Software

Our robot software architecture has four levels, each handled by a different
device.

– The RCB-3 Servo Controller handles gyro stabilization and predefined move-
ments.

– The Robostix Microcontroller detects falls and instructs the RCB-3 to stand
the robot back up, and instructs the camera to move the head into a safe
position.

– The CMUCam3 handles blob tracking and camera servo movement.
– The Verdex performs high-level behaviors, including a simple architecture for

localization, moving towards the ball, orientation for kicking, and kicking the
ball towards the goal.

4 Human Capture Data

The high-dimensional search space for our evolutionary algorithm largely con-
sists of worthless motions (e.g. unstable motions, self-collisions, etc). To bias ex-
ploration towards areas of the search space with desirable, human-like motions,
we seed our evolutionary algorithm with retargeted human motion capture data.

We used the Ascension Flock of Birds [3] magnetic motion tracking system
to collect motion data from a human subject (one of the authors). The Flock
of Birds obtains orientation and rotation data from wireless magnetic sensors



placed on various points of the human body. Due to a limited number of track-
ing sensors, the data is first collected from 10 sensors attached to anatomical
landmarks on the upper extremity of the subject and then using 10 sensors
attached to landmarks on the lower extremity of the subject. For the upper ex-
tremity we placed one sensor on the summit of each shoulder blade, two on each
elbow, and two on each wrist. For the lower body we placed one sensor on each
hip, two on each knee, one on each heel, and one near the big toes.

We collected data from fifteen trials of each motion. We then retargeted the
human motions to the robot using a simplified kinematic model that does not
attempt correct self-collisions or instability. While this results in an imprecise
translation between the human capture data and the robot, the evolutionary
algorithm learns appropriate motions from the noisy input.

5 Simulation

Unlike evolutionary robotics, we execute our evolutionary algorithm in simula-
tion to increase exploration speed, and to save wear-and-tear on the robot. We
created a full 3D simulation using the Open Dynamics Engine simulator [4]. Fig-
ure 2 shows our robot and the corresponding simulation. While the simulation
is physically plausible, it is not an exact replication of the real robot, and many
parameters such as servo play are not modeled. Still, the simulation emulates
the real robot: no changes are required to run motions on the robot or in the
simulator. We discovered that the evolved motions are easily transferred to the
real robot with minor corrections.

6 Evolution of Motion

Developing stable motions for a biped robot is a difficult problem. Typically mo-
tions are hand-crafted, requiring significant time and experience. The difficulty
is usually related to the numerous degrees of freedom on a humanoid robot, and
the careful attention that must be paid to prevent self-collisions and maintain
static and dynamic stability. In addition, the hand-crafted motions are most
likely suboptimal and specific to a single robot architecture. An alternative ap-
proach is use to machine learning to discover stable motions. Machine learning is
attractive for several reasons: first, novel solutions may be discovered which are
more efficient than human crafted motions. Also, the process can be automated,
resulting in faster exploration of potential solutions. Finally, the discovered mo-
tions are optimal, or close to optimal.

We examined the use of evolutionary algorithms to discover stable motions.
Evolutionary algorithms offer the advantage of parallel search and efficient ex-
ploration of the search space. We exploit this parallel search capability by using
hundreds of machines to simultaneously explore the space. In addition, evolu-
tionary algorithms can avoid being trapped in local optima.

To improve exploration, we employ opportunistic evolution [5]. Opportunistic
evolution operates similar to traditional master-slave evaluation, but tries to



maximize network efficiency by amortizing the cost via increasing the number of
evaluations per byte sent. The master bundles the population into chunks, and
sends a chunk to each slave. The slave then evaluates the individuals, and, if there
is remaining time, performs a mini-evolution loop on its chunk of individuals.
In this way, we increase the number of evaluations, and try to exploit any good
individuals.

6.1 Representation

We evolve a direct representation of the servo control program rather than an
abstract or parameterized representation (e.g., central pattern generators). Our
servo controller does not permit a more complex representation, and the direct
representation allows the evolution of non-cyclic motions such as kicking. How-
ever, the number of possible direct representations is huge, and many of the
possible servo configurations or transitions between configurations are imprac-
tical. To help our evolutionary algorithm, we seed the algorithm with human
capture data.

Each individual is represented by a script. Each script contains N > 0 moves,
where each move consists of a speed s and 24 servo positions, of which, 18 are
evolved and six are held constant. We do not evolve control for the neck servos.

Our representation necessitated custom genetic operators. The mutation op-
erator changes the individual in several ways. First, with probability padd a
random move is added at a random position to the script. Then, with probabil-
ity pdelete a random move is deleted, ensuring that the script contains at least 3
moves. Finally, we loop through all the moves and add uniform random noise to
the speed with probability pspeed and add uniform random noise to each servo
parameter with probability pservo.

Our crossover operator first performs a variant of traditional two-point crossover.
To crossover two individuals, we select two random integers a and b, both less
than the length of the shortest individual. The moves between a and b are then
swapped. Next, with probability parms we swap just the arm servo commands
across all moves between the two individuals. Similarly, we swap the legs with
probability plegs.

6.2 Parsimony Pressure

One issue with our representation is unconstrained growth of the individuals
without significant performance improvements. Typically, this growth, called
bloat, is controlled by special genetic operators that limit the maximum size of
an individual. However, parsimony techniques, i.e., selection methods which con-
sider the size of the individual, have recently become popular and have shown
to be effective tools for controlling bloat. The simplest parsimony pressure tech-
nique is lexicographic tournament selection which works the same way as normal
tournament selection, but if multiple individuals have the same fitness, then the
one with the shortest length is chosen [6].



6.3 Experimental Results

Using our own ECJ evolutionary library [7], we performed experiments to evolve
walking, kicking, turning and side step. Each motion required a different fitness
function, due to the different goals of each motion. For all the motions, stability
is the primary goal. For walking and side step, we want to maximize how far
the robot moves in a straight line. In kicking, we want to maximize how far the
ball travels in a straight line, and for turning we want the final orientation to be
as accurate as possible. Due to these multiple objectives, we used the Strength
Pareto Evolutionary Algorithm [8] to evolve a Pareto front of solutions; of the
possible solutions, we then manual chose the most appropriate one.
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