Team Description Paper:
HuroEvolution Humanoid Robot for
Robocup 2010 Humanoid League

Chung-Hsien Kuo1, Hung-Chyun Chou1, Jui-Chou Chung1,
Po-Chung Chia2, Shou-Wei Chi1, Yu-De Lien1

1Department of Electrical Engineering,
National Taiwan University of Science and Technology,
43 Sec. 4, Keelung Rd,
106 Taipei, Taiwan
\{chkuo, m9807306, b9532038, b9630022, b9630009\}@mail.ntust.edu.tw

2Graduate Institute of Medical Mechatronics, Chang Gung University,
256 Wen-Hwa 1st Rd,
333 Tao-Yuan, Taiwan
m9625015@stmail.cgu.edu.tw

Abstract. In this team description paper, our KidSize humanoid robot entitled HuroEvolution is introduced for the Robocup 2010 humanoid league. The HuroEvolution is constructed as a sixteen degree-of-freedom biped humanoid robot. A CMOS USB camera system is connected to a RB-100 single board computer to perform autonomous image captures and motion controls. The functions within localization of unknown ball position, walking ability towards the ball, robot positioning at the ball for kicking, kicking the ball towards the goal, and ability of getting up autonomously from a fall are all desired to perform qualifications for Robocup 2010 humanoid league. At the same time, the joint motors use Robotis AX-12 RC Servo motors to reduce motion control complexity. As a consequence, thee humanoid robots are organized in our team to complete competitions for the Robocup 2010 humanoid league.

Keywords: humanoid robot, autonomous robot, soccer robot, image localization

1 Introduction

Small size humanoid robot studies are fast increasing in the last decade. In recent year, RoboCup [1] is one of the most important competitions within humanoid robot researches. Due to the design limitations of robot size, mechanical structure, and control components, the development of a kid size humanoid robot becomes a challenging task. On the other hand, competition situations are fast transiting, and humanoid robot are required to be justified according to situation changes. Therefore, an artificial intelligence (AI) based decision making module is developed using
strategy based rules. These rules are fired with respect to the vision system of our robot.

On the other hand, the walking patterns are generated in terms of an ARM 7 [2] based gait controller, and UART serial motion commands are further generated to control the positions sixteen AX-12 RC servo motors [3]. As consequence, the overall hardware components of our HuroEvolution humanoid robot is composed of a single board computer with windows XP operation system, a half-view omni-vision camera, an ARM 7 micro controller, battery and power regulations module. The software components consist of the functions of image capture, image recognition, localizations of a ball and a goal, strategies and decisions, gait pattern generations, acceleration data detection, and motor controls.

This team project is the first time of our team to participate the RoboCup. However, in last three years, we participate the Hurocup of FIRA [4] from 2006 to 2009. In 2006, we awarded the fourth place of the overall rating of FIRA HuroCup (robot name: Taiwan 101 [5] from the team advisor’s former university”. The current developments of the HuroEvolution are designed based on our previous experiences. The HuroEvolution also participated the humanoid league of “2009 Cross-Strait Competition on Soccer Robots”. Fig. 1 shows the humanoid robots a competition of our team and a China team.

![Fig 1. Our robot on competition field in China.](image)

2 Mechanical Design

The HuroEvolution is designed as a sixteen degree-of-freedom (DOF) humanoid robot; where 10 DOF joints are desired for two legs, and 6 DOF joints are desired for two arms. The mechanical structure is shown in Fig. 2. A half-view omni-vision camera is mounted on the shoulder as a robot head. An accelerometer is attached on
the chest of the body so that the falling down situation can be detected. Most of parts use the kids from Robotis Bioloid [3] to fast up the building of our robot. As a consequence, the photo of our HuroEvolution is shown in Fig. 3.

![Skeleton model of the HuroEvolution](image1.png)

Fig 2. Skeleton model of the HuroEvolution.

![Photo of the HuroEvolution](image2.png)

Fig. 3. Photo of the HuroEvolution

3 Hardware design

Five hardware modules are desired for the HuroEvolution humanoid robot, and they are a single board computer, a half-view omni-vision camera, an ARM 7 micro controller, accelerometer sensor board, and RC servos. The hardware architecture is shown in Fig. 4, and the hardware specification is shown in Table 1. These modules are further introduced:

1. Single board computer: Due to power consumption and size concerns, a RoboBoard RB-100 single computer board is used. The single computer board uses the
Microsoft Windows XP as its operation system. The software modules of image capture, image recognition, falling down detection, and gait decision are all implemented based on this single board computer. On the other hand, an ARM 7 based gait pattern generator is connected with a RB-100 board to generate realtime gait patterns for a specific gait decision.

2. Half-view omni-vision camera: In this team project, an half-view omni-camera (VS-C14U-80-ST [6]) is desired to capture images in front of the robot. It is noted that according to the rules of Robocup humanoid league and the range limitations of human’s eye-gazing, only half of the omni-vision is available for the HuroEvolution.

3. ARM 7 microcontroller: The ARM 7 based microcontroller is used to implement realtime gait pattern generations by either a kinematics or a training based motion patterns. The input of the gait generator is a “gait decision”, and the outputs are a set of synchronized motor position commands via UART communications.

4. Accelerometer sensor board: In this board, an accelerometer with ADXL335 [7] is used for this project to detect the falling down situations. More specially, the sensor data is collected by the ARM 7 microcontroller.

5. RC servos: Sixteen RC servos with Robotis AX-12 model are used to perform the desired gait motions.

4 Software design

In addition to the hardware, the software components are also introduced. The software components consist of the modules of image capture, image recognition, localizations of a ball and a goal, strategies and decisions, gait pattern generations, acceleration data detection, and motor controls. These modules are implemented on either the RB-100 or ARM 7. They are further described in the follows.

1. Image capture and image recognition: This module is responsible of retrieving the pixel regions of the ball and goal. If the ball and goal cannot be recognized,
the robot may rotate itself or move forward and try to find them.

Table 1. Hardware specification

<table>
<thead>
<tr>
<th>ROBOT</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HurroEvolution</td>
</tr>
<tr>
<td>Height of Robot</td>
<td>413mm</td>
</tr>
<tr>
<td>Weight of Robot</td>
<td>2.2kg</td>
</tr>
<tr>
<td>Walking Speed</td>
<td>Maximum: 10 cm/s</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>16</td>
</tr>
<tr>
<td>With Leg:</td>
<td>5 x 2</td>
</tr>
<tr>
<td>Arm:</td>
<td>3 x 2</td>
</tr>
<tr>
<td>Type of motor</td>
<td>16 x AX-12(Servo,motor)</td>
</tr>
<tr>
<td>Torque</td>
<td>12.0 kg/cm~16.5kg/cm</td>
</tr>
<tr>
<td>Speed</td>
<td>0.196 sec/60°</td>
</tr>
<tr>
<td>Computing unit</td>
<td>Roboard RB-100</td>
</tr>
<tr>
<td>Processor:</td>
<td>DM&P Vortex86DX</td>
</tr>
<tr>
<td>Operating System:</td>
<td>Windows XP</td>
</tr>
<tr>
<td>Motion Controller</td>
<td>ST ARM 7</td>
</tr>
<tr>
<td>Camera</td>
<td>VS-C14U-80-ST</td>
</tr>
<tr>
<td>Frame rate:</td>
<td>30fps</td>
</tr>
<tr>
<td>Pixel Clock Frequency:</td>
<td>29.5MHZ</td>
</tr>
<tr>
<td>Total Picture Element:</td>
<td>1077 (H) x 788 (V)</td>
</tr>
<tr>
<td>Batteries</td>
<td>2 x Li-Po 11V 850mAh</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>ADXL335</td>
</tr>
</tbody>
</table>

2. Localizations of a ball and a goal: This module is responsible for retrieving the directions of the ball and goal as well as the approximate distance of the ball and goal.

3. Strategies and decisions: To finish a competition, a rule based decision subsystem is developed according to different strategies. In addition, a simple coordinated subsystem is further introduced to define the role of robots.

4. Gait pattern generations: Several basic gait patterns such as “moving forward”, “side-shifting”, “rotating itself”, “standing up from a fall”, “backward walking”, and so on are generated via a ARM 7 microcontroller. In the current version, the gait patterns may be generated from kinematics or on-site training modes. The use of mode is determined by different characteristics of the gaits.

5. Acceleration data detection: A serial communication packet is decoded to retrieve the acceleration data so that the falling down situation can be detected.

6. Motor control: Due to the uses of Robotis AX-12 RC servos, the motor control is implemented using a sequence of serial communication packet.

5 Conclusion and Future Work

Humanoid robotic research is a very challenging research topic. Our laboratory has devoted 5 years in the development of humanoid robot from small size humanoid robots [5, 8], full size humanoid robot [9], parallel kinematics based humanoid robot [10] and hybrid-structure humanoid robots [11]. We also participated the FIRA
competitions for 4 years. We are now trying to extend our research interests to the most important humanoid robot competition, Robocup. We believe the participations of Robocup will induce more research potential for our team via sharing and learning with other teams. The current version is just a prototype to be submitted for the qualification. In the future, a Linux kernel will be used for the future study to improve the realtime performance. On the other hand, fast and stable humanoid locomotion is another issue for use to improve the walking performance. Finally, modular, flexible as well as reusable software and control architectures are also to be justified to increase the efficiency of on-site adjustments on the competition field.

5. Reference