SigmaBan Team Description Paper
Humanoid KidSize League, Robocup 2011

H. Gimbert, L. Gondry, O. Ly, Ph. Narbel,

gimbert@labri.fr, loic.gondry@free.fr, ly@labri.fr, narbel@labri.fr

CNRS, INRIA Flowers, LaBRI, University of Bordeaux 1
33405 Talence, FRANCE

Abstract. This paper gives a short overview of the design of a kid-size
humanoid robot able to play soccer in an autonomous way. It describes
the main hardware and software components of the robot in their current
states.

(Les robots me sont pas toujours ceux que l’on croit ou ceuz qu’ils croient étre.)

1 Introduction

SigmaBan is an on-going robotic project whose team members are researchers
at Bordeaux 1 University and INRIA’s Flowers [6]. This project stems from
the desire to better understand the problems arising from building a fully au-
tonomous bipede capable of human-like motions, and to thoroughly study their
solutions from an empirical and a theoretical point-of-view. In this context, sev-
eral prototypes have been already built and tested [3,4,1], focussing on walking,
locomotion, interactions, and proposing some new solutions in terms of robot
mechanical structure (e.g. spine-oriented) and compliance. The idea of playing
a dynamic game like soccer — a very interesting testbed for producing complex
situations in a constrained environment — has driven the team to design a new
robot with an improved structure, including video/image analysis and planning
behaviour tactics, a necessary step forward to make the robot gain autonomy.
This short paper gives an overview of this robot system in its current state, for
the prospect of making it participate to Robocup 2011.

2 Hardware Overview

2.1 Mechanical Structure

The mechanical structure of the robot involves 22 degrees of freedom: 6 for each
leg, 2 for the pelvis (rotation in the sagittal plane and in the coronal plane),
3 for each arm, and 2 for the head (pitch and yaw rotations). The global shape
of the robot is globally standard. However, as we already pointed out, our design
focuses on the compliance of the structure. Our goal has been indeed to improve
the intrinsic stability of the system, and to avoid as much as possible inelastic



shocks. Accordingly, we included several springs to the structure, as well as some
flexible and soft materials like plastics and foam. We also introduced free linear
joints controlled by dampers only. These joints absorb vertical shocks occuring
during the gait, especially at the landing of the foot on the ground. These joints
are located in the following places of the mechanical structure:

— In the hips, allowing a vertical linear motion.

— In the spine, allowing a vertical motion as well.

— In the shoulders, making the rotation of shoulder in the coronal plane com-
pliant.

These joints introduce new not-controlled degrees of freedom, making the robot
semi-passive. Moreover, the dampers are also used in another way, that is, as
feedback force sensors. For instance, the vertical damper located in the hip di-
rectly samples the ground reaction force. This force can thus be computed from
the measure of the length of the damper by taking into account its friction and
spring coeflicients. Even if more complex control is involved, the empirical ex-
periments have showed very good stability properties, and new possibilities for
improving the robot motions in the future.

Here are the main quantitative values describing the robot:

Value|Unit
Degrees of freedom| 22
Weight 3.7 | kg
Height 58 | cm

Leg Length 27 | cm
Arm Length 27 | cm
Foot Length 13 | cm




2.2 Actuators and Sensors

All the joints are actuated by servomotors. We use off-the-shelf servomotors,
that is, Dynamixel RX-28, Dynamixel RX-64, and Standard RC servomotors for
the head motion. We also use dynamixel servo position control (and feedback) in
a standard way, but we exploit their maximum-torque control in order to again
introduce compliance in the motions of the robot. Besides, we use standard
servomotors for the head because of their lighter weight, and also because strict
position control without feedback is sufficient for the head.
The robot gets feedbacks through the following main sensors:

— Gyroscopic sensor. We use a 2-axis gyroscopic sensor measuring the rotation
speed in the coronal and the sagittal planes. This sensor is located on the
hip. The component we use is an IDG500.

— Accelerometer. We use a 3-axis accelerometer sensor measuring the accelera-
tion applied to the robot structure mixed with the gravity force. This sensor
is more difficult to interpret, however it gives an absolute position informa-
tion which completes in a useful way the measures of the gyroscopic sensor.
The component we use here is an ADXL335.

— Camera. At the moment, the head of the robot is equiped with a Philips we-

beam of type SPC620NC. It samples pictures with a low resolution (160x120

pixels) with a frequency of 8 Hz.

Joint Positions. On top of that, the robot uses also joint position feedback

provided by each dynamixel servo. In particular, considering some particular

motion phases, one decreases the torque of some servo to make the motion
compliant. Therefore, at these points, the joint position feedback becomes
essential.

2.3 Processing Units

The embedded system consists of two main processing units: an ARM7 microcon-
troller without operating system, and an ARM9 microcontroller equiped with
Linux. The ARM9 has 64MB SDRAM and its frequency is 210MHz, and the
ARMYTY has 64kB RAM with 55 MIPS. More precisely:

— The ARMSY microcontroller is in charge of the high-level behaviour man-
agement and the execution of the high-level programmed components:

o High-level decision processes. The behaviour of the robot is driven by
state machines, mostly statecharts and finite state-machines (FSM).

e High-level motor primitive parametrization. The different movement of
the robot are defined in terms of motor primitives. These motor prim-
itives have high-level parameters used to adapt them in a continuous
manner. These are the parameters through which the high-level system
drives the robot.

o Complex feedback analysis.

o Vision module.

o Communication with external entities (via WiFi IP protocol)



— The ARMYT microcontroller is in charge of the low-level management:

e Motion scheduling. Part of motions are defined by mean of splines. These
splines are generated at low level in order to ensure real-time (50 Hz).

e FElementary control unit. On top of splines, the motions are defined with
several PID controller acting on different part of the robot, and also on
some parameters of the motion (e.g., spline amplitude).

e Servomotor control. The processing unit communicates with dynamixel
servos via a RS-485 bus. It sends orders to standard RC servo via PWM
signal generation.

Both processing unit communicate via a serial USART bus. We now describe in
more details some of the above components, in particular the vision module and
the motion control system.

3 Vision Module

The vision module of the SigmaBan robot is responsible for making all the
necessary image processing and analysis. This module runs on the Linux of
the ARM9 system, and it consists of a collection of programs and components
written in C and C++4-. Most of their implemented algorithms use the OpenCV 2
library (Open Source Computer Vision Library) [5,2]. This large computer vision
library allowed us to experiment and tune many different tactics for detecting
and tracking objects of interest like the ball, the goal posts, the other players,
and the line fields. The vision module currently has the following characteristics:

— It essentially uses color images with the HSV color space.

— For detecting and tracking objects, the vision module essentially use various
smoothing operators and image morphological transformations, hierarchical
contour detection algorithms, Hough transforms, circle/ellipse/polygon fit-
ting, and histogram analysis.

— Robustness of the detection/tracking processes has also been taken care of,
in particular with respect to object obstructions, by using explicit hypothesis
upon the properties of the objects, and with respect to lighting and color
variations, by using histogram transformations and distances.

— Self-localization and estimation of object relative positions are still elemen-
tary, as they only rely on sizes of the detected objects, and on the angles of
the robot’s head.

The video/image analysis algorithms of the vision module are designed and
tested for different image resolutions (640x480, 320x240, 160x120). Indeed, even
if the resolution currently on use is 160x120 (see Sec. 2.2), we are looking forward
to include more computing power, and also to exploit opportunistic resolutions,
so as to be able to associate them to the states of the robot. Also, in order to
pre-test some of the algorithms of the vision module, we design dynamic models



of soccer field and robots in the Second Life virtual world. This allowed us for
instance to more easily obtain well-defined complex sequences of images, sets of
characteristic obstruction situations, and strict uniform ligthing conditions.

4 Motions

4.1 Behaviour Control

The motor behaviour of the robot is driven by two layers. The high-level be-
haviour is defined in terms of state machines. In turn, this state machines control
low-level motor primitives. States define global behaviour, e.g. , “Searching the
ball”, “Tracking the ball”, “Adjusting position for shooting”, etc. There are two
main state machines: One of them defines the behaviours of the head which is
in charge of searching and tracking the ball. The second one defines the loco-
motion strategy. The state machines control motor primitives: they launch and
stop them and they drive them via reduce sets of user-defined parameters.

4.2 Motion Design and Control

We design motions through a graphical framework environment we have devel-
oped where motions are subdivided into modules called parameterized motor
primitives. Here is the general aspect of this environment:

Move Store
Management

Spline
design

|
_ %*TTTT |

M

Position
Test Block
Organisation

Motor primitives are combined in order to form global motions of the robot in
a modular way. Time is discretized; at each time, each active motor primitive
computes relative output values; then, for each output, all these computed values
are weighted and added to get the final output value. In turn, motor primitives
are themselves organized in a classical way as block schemes involving inputs,
basic blocks (filters) and outputs defined as follows:



— Inputs of the motor control system taken into consideration:

e Sensors. At the moment, the robot is equipped with a 3-axis accelerom-
eter and a 2-axis gyro located on the hip.

o Internal Motor Position. position error. When the motor is compliant,
it makes an error in position regarding its position target. This position
error can be measured accurately and is extensively used in the motor
primitives. Motors can also return the load, i.e., the torque applied to
the motor.

e FEaxternal Interfaces. Essentially during test phases, we use a joypad to
control the parameters of certain motor primitive in real-time.

e Splines. Inputs can also be splines, which are in our case piecewise linear
functions defined by the user point by point. Let us note that seeing
that the frequency of the motor control system is low, piecewise linear
functions gives already satisfying results.

e Periodic functions. One can also use periodic functions (typically trigono-
metric functions) as input. This is used essentially to define Central Pat-
tern Generator (CPG for short) as motor primitives.

— Outputs of the motor control system taken into consideration:

e Joint positions. This is the most basic output of the motor primitive
system. It consists in fixing the target position of a particular joint.

e Joint maximal torque. This fixes a bound for the torque enforced by a
particular servomotor.

o Operational space position of feet. Partial inverse kinematic is computed
onboard by the platform: Cartesian position of each foot. This means
that one can give orders concerning the Cartesian position of each foot.

o Motor Primitive Parameters. Some motor primitive parameters can be
also used as output of the system. This means that a basic block can
be used to modify for instance the amplitude of a particular spline. In
a similar way, gains of outputs, of filters, speed of CPG can also be
modified in this way.

The following classical types of blocks are available: proportional controller,
weighted sum, mobile average, phase shift, discrete variation and integrator. In
addition, one can define maximum and minimal bounds for each block input
and output. Blocks can be combined with each other. For instance, this can be
used to enforce PID controllers. Our method for motion design (including loco-
motion) is mostly empirical. We used the motion design environment to define
motor primitives, exploiting sensors traces and motion tracking to get feedback.

4.3 Sagittal Stabilization

In the sagittal plane, we use each motor primitives described above enforced by
PID controllers whose gain are adjusted by expert knowledge and experiments.
We also use compliance in the sagittal rotation of the lower joint of the vertebral
column, enforced in a spring mode. Error is re-injected in the sagittal rotation of
the shoulder and in the pelvis sagittal horizontal position via a PID controller.



4.4 Gait Control

At the moment, we designed two different dynamic gaits: The first one is a slow
one (0.85 Hz). A characteristic of this gait is that the grounded leg is straight
and the other is compliant. This gait is used for precise locomotion, for instance
the adjustment of the position for shooting the ball. The second gait is faster
(1.35 Hz), as it is dedicated to move around in the game field. Note that the
design of the gaits is still a work in progress, as we are searching for optimal
uses of the semi-passive mechanical structure of the robot (see Sec. 2.1).

References

1. Rhoban Project. 2009. http://www.youtube.com/user/theRhoBan.

2. G. Bradsky and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly, 2008.

3. O. Ly and P.-Y. Oudeyer. Acroban the humanoid: Compliance for stabilization and
human interaction. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2010.

4. O. Ly and P.-Y. Oudeyer. Acroban the humanoid: Playful and compliant physi-
cal child-robot interaction. In ACM SIGGRAPH’2010 Emerging Technologies, Los
Angeles, 2010.

5. OpenCV Home Page. http://opencv.willowgarage.com/wiki/ (accessed, January
2011).

6. Flowers Team. http://flowers.inria.fr.



