
RoboPatriots: George Mason University
2012 RoboCup Team

Keith Sullivan, Katherine Russell, Kevin Andrea,
Barak Stout, and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

ksulliv2@cs.gmu.edu, krusselc@gmu.edu, kandrea@gmu.edu,

bstout1@gmu.edu, sean@cs.gmu.edu

Abstract. The RoboPatriots from George Mason University are a team
of three humanoid robots. As we are interested in embodied AI, our
robots are based on commercially available equipment. We use the three
on-board computers for research into learning from demonstration, a su-
pervised machine learning technique for training robot behavior. RoboCup
2012 marks the fourth year of participation for the RoboPatriots: in 2009
and 2010, we advanced to the second round, and in 2011 we were elimi-
nated in the first round.

1 Introduction

The RoboPatriots are a team of three humanoid robots designed by the Com-
puter Science Department at George Mason University. Each robot is based
on the Kondo KHR-3HV, a customized Surveyor SVS camera, and a Gumstix
embedded computer (see Figure 1).

2 Hardware

We are interested in embodied AI, so we choose commercially available hardware
rather than fabricating our own. Figure 2 shows the hardware architecture and
information flow between components.

The robot base is the Kondo KHR-3HV. Each robot has 3 DOF per arm, 6
DOF per leg, and 2 DOF in the neck. The eighteen Kondo KRS-2555HV digital
servos used in the arms and legs produce 14 kg-cm of torque at a speed of 0.14
sec / 60 degrees. The 2555HV servos communicate via a serial protocol and are
controlled by the RCB-4 servo controller board. In addition, two KRG-3 single
axis gyros and one RAS-2 dual axis accelerometer connect to the RCB-4. The
two Kondo KRS-788HV digital servos used in our pan/tilt mount produce 10
kg-cm of torque at a speed of 0.14 sec. / 60 degrees. These servos are controlled
by the Surveyor SVS vision system via PWM.

Our main sensor is the Surveyor Stereo Vision System (SVS) [1]. The SVS
consists of two OmniVision OV 7725 camera modules connected to two indepen-
dent 600 MHz Blackfin BF537 processors. The two camera modules are mounted



Fig. 1. 2012 RoboPatriot’s robot.

on a pan/tilt mount with 10.5 cm separation. Each camera module operates at
640x480 resolution with a 90-degree field of view. The two processors are con-
nected via a dedicated SPI bus.

The main processor is a Gumstix Overo Air [2]: a 600 MHz OMAP 3503
processor with 256 MB of flash and 256 MB RAM. The Air runs embedded
Linux, and provides 802.11 b/g. The Air communicates with the RCB-4 over a
dedicated serial bus with a custom inverter circuit for logic level shifting and
signal inversion. The SVS and Air are connected via USB/serial bridge. The
Air and SVS are mounted on a custom motherboard which also provides power
distribution, USB and ethernet connections, and sensor connections. See Figure
3 for a prototype.

Each robot has a 11.1V 2200 mAh battery.
We are currently designing a custom servo control board to replace the RCB-

4, KRG-3, and RAS-2, and plan to field this new board in Mexico. The new
control board will allow closed loop motion control and less noisy gyro and
accelerometer data. The board will use a STM32F405 MCU running at 168
MHz with 1Mb RAM and a hardware floating point unit. A LSM303DLH three-
axis accelerometer and a L3G4200D three-axis gyro are the primary sensors, and
we planning to add eight force sensors into the feet.

3 Software

The RoboPatriots’ software was developed internally at GMU. The goalie and
attackers each run a state machine for high level decision making. The state
machines include states for approaching the ball, orientation for kicking, and
kicking towards the goal. As in past years, predefined motions are stored on the



Kondo RCB-4
Servo Controller

Kondo KRG-3
Gryoscope

Kondo KHR-3HV 
Servos

Surveyor SVS 
Master

600 MHz Blackfin Processor

Kondo RAS-3
Accelerometer

Head Pan/Tilt
Servos

Gumstix Overo Air 
 ARM Cortex-A8 OMAP3503

600 MHz Processor

SVS Slave
600 MHz Blackfin 

Processor

Buttons

Fig. 2. The hardware architecture of the RoboPatriots, and the information flow be-
tween components.

Fig. 3. A prototype of the integrated motherboard connecting the Gumstix computer
and SVS modules.



RCB-4 and are not dynamically modifiable. However, we can interrupt motions
during execution and can run cyclic motions for an arbitrary length (e.g., we can
execute N walking steps based on dynamic sensor information). The software
architecture is split across the RCB-4, SVS and Gumstix as follows:

– The RCB-4 Servo controller handles gyro stabilization and execution of pre-
defined motions.

– The SVS performs vision related tasks (discussed below).
– The Gumstix detects falls, handles communication, performs localization,

and runs the state machine.

Vision One camera module of the SVS handles basic color tracking, first using
its own image, then the image from the other camera module. If both camera
modules detect the color, then stereo depth mapping combined with the camera
pan/tilt position provides an approximate physical distance to the object of in-
terest. In addition, ground-plane calibration allows us to ensure detected objects
are on the floor, and shape detection ensures detection of appropriate objects
such as the goals, the ball, and field lines.

Localization Our localization module uses a particle filter with random parti-
cle injection. The field is represented as a topological graph, where nodes are
distinct field features (lines, goal posts, and side markers), and edges are log-
ical connections between features. The sensor model computes the probability
of observing a set of features given a location. The motion model is based on
basic walking behaviors. The localization information is used for autonomous
repositioning and robot coordination.

4 Learning from Demonstration

Our research interests with RoboPatriots focus on learning from demonstration
(LfD) where robots learn a behavior in real-time based on provided examples
from a human demonstrator. LfD teaches an agent a policy which maps envi-
ronment features to agent action(s). The policy is learned from a database of
examples (state/action pairs) provided by a demonstrator, and is constructed
interactively: initially, the agent is in “training mode”, where the demonstrator
controls the agent. Every time the demonstrator changes the agent’s behavior,
the agent saves an example to the database. When the demonstrator has finished
collecting examples, the agent learns the policy, and enters “testing mode” where
the agent operates autonomously. Based on observation, the demonstrator may
then offer corrections to the agent. These corrections add further examples to
the database, and the policy is then re-learned. LfD is a natural way to train
agents since it closely mimics how humans teach each other. In many domains,
people show someone a task, then correct the behavior as the trainee performs
the task. Examples include sports, music, and physical therapy.

Our approach, called Hierarchical Training of Agent Behavior (HiTAB) learns
a hierarchical finite state automaton (HFA) represented as a Moore machine:



individual states correspond to agent behaviors, or the states may themselves be
another HFA. An HFA is constructed iteratively: staring with a behavior library
consisting solely of atomic behaviors (e.g., turn, go forward), the demonstrator
trains a slightly more complicated behavior, which is then saved to the behavior
library. The now expanded behavior library is then used to train an even more
complex behavior which is then saved to the library. This process continues until
the desired behavior is trained.

The motivation behind HiTAB was to develop a LfD system which could
rapidly train complex agent behaviors. Typically, training complex robot behav-
iors requires many datapoints. HiTAB’s behavior hierarchy reduces the number
of datapoints through its decomposition of tasks into smaller, easier to train
tasks. Features within HiTAB may describe both internal and external (world)
conditions, and may be toroidal (such as “angle to goal”), continuous (“distance
to goal”), or categorical or boolean (“goal is visible”). Since the number of fea-
tures is potentially large and all features are not necessarily appropriate to the
task, HiTAB allows a per-HFA feature vector to further reduce the size of the
learning space.

The states within HiTAB correspond to an agent behavior: when in a given
state, the agent performs the associated behavior. Every HFA within HiTAB
contains a start state which simply idles until transitioning to another state.
Some HFAs might have a done state which always transitions to the start state.
The start and done states are broken out this way to allow task-specific code to
be run. Typically, transitions between states are represented as a directed edge;
I take a different approach by using transition functions which map the current
state and feature vector to a new state. HiTAB learns a transition function for
every state in the HFA. Figure 4 shows a simple example of an HFA within
HiTAB.

Learning the transition functions is a classification task where the classes
are the individual states and attributes are the environmental features. While
many classification algorithm are applicable, HiTAB uses a version of the C4.5
decision tree algorithm [4] with probabilistic leaf nodes. Decision trees nicely
handle different types of data (e.g., continuous, toroidal, and categorical), and are
scale-free. Also, many agent tasks can be approximated by rectangular partitions
of the feature space. Typically, decision trees deterministically compute the class:
a leaf is set to the class appearing in a plurality of examples. HiTAB instead
uses a probability distribution over the classes appearing at a leaf node.

Running HiTAB An automaton starts in its start state. Each timestep, while
in state St, the automaton first queries the transition function to determine the
next state St+1, transitions to this state, and if St 6= St+1, stops performing St’s
behavior and starts performing St+1’s behavior.

Training with HiTAB Training is an iterative process of a training mode and a
testing mode. In the training mode, the agent performs exactly those behaviors
as directed by the demonstrator. During training, each time a state transition
occurs, the agent records a training example: a tuple 〈St,ft, St+1〉 which stores



Start

Turn 
Left

Forward Turn 
Right

Done

Always

Always

Always

Always

If obstacle 
< 2.5 to left

If obstacle in front 
or obstacle < 3.2 to right

If traveled 
> 10 units

Fig. 4. A simple HFA for obstacle avoidance. All conditions not shown are assumed to
indicate that the agent remains in its current state.

the current feature vector, along with the old and new states. If state St+1 must
be executed exactly once, then no additional examples are recorded. Otherwise,
a default example is stored: 〈St+1,ft, St+1〉, which tells the agent to continue in
the current state if the given feature vector is observed again. The feature vector
is specified by the user from a library of predefined but parameterizable features
appropriate to the task.

Once enough examples are collected, the demonstrator switches to the testing
mode, which causes the agent to learn the transition functions within the finite-
state automaton. For a given state Si, HiTAB takes all examples of the form
〈Si, ft, Sj〉 and reduces them to 〈ft, Sj〉 which form points ft with labels Sj .
HiTAB then applies a classification algorithm to learn the transition function
from state Si.

After all the transition functions are built, the agent begins performing the
learned behavior as described above. If the demonstrator observes the agent
performing an incorrect behavior, they may step in causing the agent to switch
back to training mode and collect additional examples, then reenter testing mode
where HiTAB rebuilds all the transition functions to create a new trained be-
havior. This turn-taking continues until the demonstrator is satisfied with the
agents’ behavior.

When a trained behavior is saved for later inclusion in the behavior library,
unused states and features are trimmed before saving. In addition, any parame-
terized behaviors and features are bound to a target (e.g., “nearest obstacle”), or
to a parameter of the automaton itself. An early version of HiTAB was developed
by Luke and Ziparo [3].



Formal Model The HFA is at the heart of HiTAB. An automaton is a tuple
〈S,B, F, T 〉 ∈ H defined as follows:

– S = {S1, . . . , Sn} is the set of states in the automaton. Included is one special
state, the start state S0, and zero or more flag states. Exactly one state is
active at a time, designated St.
The purpose of a flag state is simply to raise a flag in the automaton to
indicate that the automaton believes that some condition is now true. Two
obvious conditions might be done and failed, but there could be many more.
Flags in an automaton appear as optional features in its parent automaton.
For example, the done flag may be used by the parent to transition away from
the current automaton because the automaton believes it has completed its
task.

– B = {B1, . . . , Bk} is the set of basic behaviors. Each state is associated with
either a basic behavior or another automaton from H, though recursion is
not permitted.

– F = {f1, . . . , fm} is the set of observable features in the environment. At
any given time each feature has a numerical value. The collective values of
F at time t is the environment’s feature vector f t = 〈f1, ..., fm〉.

– T = f t × S → S is the transition function which maps the current state St

and the current feature vector f t to a new state St+1.
– Optional free variables (parameters) G1, . . . , Gn for basic behaviors and fea-

tures generalize the model: each behavior Bi and feature fi are replaced as
Bi(G1, . . . , Gn) and fi(G1, . . . , Gn). The evaluation of the transition func-
tion and the execution of behaviors are based on ground instances of the free
variables. For example, rather than have a behavior called go to the ball, we
can create a behavior called goTo(A), where A is left unspecified. Similarly,
a feature might be defined not as distance to the ball but as distanceTo(B).
If such a behavior or feature is used in an automaton, either its parameter
must be bound to a specific target (such as “the ball” or “the nearest ob-
stacle”), or it must be bound to some higher-level parent of the automaton
itself. Thus HFAs may themselves be parameterized.

RoboPatriots and HiTAB Our ultimate goal is to field a humanoid soccer team
which is trained, rather than programmed. To that end, we have ported HiTAB
to the RoboPatriot humanoids and have trained the robot to perform visual
servoing [9]. The goal was for the robot to search for the ball by turning the
“correct” direction, and walk towards the ball. Using feature information from
the camera, a group of computer science graduate students with no humanoid
robot experience successfully trained the robot. In addition, we demonstrated
that learning complex behaviors in a hierarchical fashion is quicker and easier
then learning complex behaviors in a monolithic fashion.

Transitioning from a single robot to a group of robots, we have also organized
a team of robots into a robot hierarchy, with robots at leaf nodes and coordinator
robots as nonleaf nodes [8, 6, 7, 5]. This tree-structured organization dovetails
with our HFA-based task decomposition. Individual robots are trained as usual,



with the caveat that all robots share the same behavior library. Coordinator
agents control a group of agents, and themselves are trained to develop an HFA.
Future work will focus on heterogeneous robot hierarchies: each subgroup runs
a different HFA, with dynamic subgroup membership.

5 Conclusions

We described hardware and software of the RoboPatriots, a team of three hu-
manoid robots developed at George Mason University. The RoboPatriots are our
primary research platform for our learning from demonstration system, which
aims to apply learning from demonstration to multiple, cooperating robots.

Statement of Commitment

The RoboPatriots commit to participate in RoboCup 2012 in Mexico City and
to provide a referee knowledgeable of the rules of the Humanoid League.

Acknowledgments

We would like to thank Harris Coperation for financial support.

References

1. Surveyor stereo vision system. http://www.surveyor.com/stereo/stereo_info.

html (2010)
2. Gumstix inc. http://www.gumstix.com (2011)
3. Luke, S., Ziparo, V.: Learn to behave! rapid training of behavior automata. In: Grześ,

M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Workshop at
AAM AS 2010. pp. 61 – 68 (2010)

4. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in
Machine Learning, Morgan Kaufmann, 1 edn. (January 1993)

5. Sullivan, K.: Multiagent hierarchical learning from demonstration. In: Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI) (2011)

6. Sullivan, K., Luke, S.: Hierarchical multi-robot learning from demonstration. Tech.
rep., Department of Computer Science, George Mason University, 4400 University
Drive, MSN 4A5, Fairfax, VA 22030-4444 USA (2011)

7. Sullivan, K., Luke, S.: Multiagent supervised training with agent hierarchies and
manual behavior decomposition. In: Proceedings of Agents Learning Interactively
from Human Teachers Workshop (2011)

8. Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In:
Proceedings of Autonomous Agents and Multi-Agent Systems Conference (AAMAS)
(2012)

9. Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration on
humanoid robots. In: Proceedings of Humanoid Robots Learning from Human In-
teraction Workshop. Nashville, TN (2010)


