Uni idad
DetbSoutte,| By N

January 28th, 2013

Humanoid League Technical Committee,

I hereby express the full commitment of team Cyberlords La Salle, which I
formally represent, to participate in the 2013 edition of the RoboCup World

Championship to take place in Eindhoven on June 24" — 30™.

I also express the full commitment of the team to provide at least one team

member with sufficient knowledge of the rules to act as referee during the competition.

M. en C. LUIS FERNANDO LUPIAN SANCHEZ
Profesor Investigador, Laboratorio de Robotica Mdvil y Sistemas Automatizados
Facultad de Ingenieria, Universidad La Salle, México, D.F., MEXICO
+52(55)52789500 ext. 2286, lupianl@Ici.ulsa.mx

Cyberlords RoboCup 2013 Humanoid KidSize
Team Description Paper

Luis F Lupidn, Diego Mérquez, Omar Nelson, Francisco Lecumberri, and
Tker Sanz

Mobile Robotics and Automated Systems Lab, Universidad La Salle, México
lupianl@Ici.ulsa.mx http://www.cyberlordslasalle.org

Abstract. We describe the RoboCup KidSize humanoid robots to be
used by team Cyberlords La Salle in the RoboCup 2013 competition to
be held in Mexico City, Mexico. For this edition of the competition we
will present three different robot architectures. One of them is based on
the ROBONOVA-1 robot, and two on the KonpDo KHR-3HV. Having dif-
ferent hardware architectures has forced our group to develop a software
library called libCyberlords, which has undergone a major reorganization
in preparation for 2013.

1 Introduction

Team Cyberlords La Salle, which is part of the Mobile Robotics and Auto-
mated Systems Laboratory at Universidad La Salle México, started its humanoid
robot project in July 2008. The team debuted becoming champion at the First
RoboCup Mexican Open in September 2008. Since then, the team has taken part
in three RoboCup World Championships, two RoboCup Latin American Opens
and two additional RoboCup Mexican Opens. The team has shown consistent
improvement since its first RoboCup World Championship. In RoboCup 2009,
team Cyberlords La Salle scored 2 goals and won one of its three matches. In
RoboCup 2010, the team advanced to the second round and scored a total of
six goals. In these two world championships the team participated in collabo-
ration with the Robotics and Artificial Vision Laboratory of Cinvestav [1], [2].
In RoboCup 2011, where our team participated on its own, our top scorer Max
scored seven goals and the team was just one goal away from reaching the quarter
finals. At the RoboCup Latin American Open team Cyberlords La Salle became
champion for two years in a row, 2010 and 2011. In the RoboCup Latin American
Open 2011, which took place in Bogota, Colombia, our top scorer Max broke its
own record by scoring nine goals in four matches (Fig. 1).

During 2012 our team worked in collaboration with team Falconbots Tec San
Martin under the name Cyberlords + Falconbots [3]. Under this collaboration,
our team conquered the Mexican Championship in April 2012 by winning three
out of four matches and tying the other one at the RoboCup Mexican Open
2012 (Fig. 2). During RoboCup 2012 in Mexico City, our team advanced in 1st
place of its first-round group after defeating the Indonesian team by 3 to 1. It

2 L.F. Lupian, D. Marquez, O. Nelson, F. Lecumberri, I. Sanz

Fig. 1. Max at the RoboCup Latin American Open, Bogota, Colombia, October 2011

must be noted that for RoboCup 2012 our team played with two DARWIN-OP
robots, one of them provided by team Falconbots Tec San Martin and the other
one by Prof. Jacky Baltes, from the University of Manitoba, to whom we owe
our gratitude.

Fig. 2. Max shooting for the final goal at the RoboCup Mexican Open, April 2012

2 Hardware Architectures

One of our main objectives in RoboCup 2012 was to demonstrate the porta-
bility and interoperability of our humanoid robot software library IibCyber-
lords. For that edition of the Wolrd Cup we competed as a joint team com-
posed of a ROBONOVA-1 based robot, two KoNDO KHR-3HV based robots and
two DARWIN-OP. This gave us the opportunity to test the library on different
hardware architectures. In the case of both DARWIN-OP robots only the vision
and decision sub-systems of IlibCyberlords were used, since our colleagues from
Falconbots Tec San Martin decided to develop their own locomotion system.
Nonetheless, this was sufficient to prove our point. Both DARWIN-OP robots
on our team outperformed our top scorer Max despite the fact that IlibCyber-
lords was not originally designed with the DARWIN-OP architecture in mind.
The two DARWIN-OP robots in our team scored a total of three goals in one of
our matches at RoboCup 2012 (Fig. 3).

Cyberlords RoboCup 2013 Humanoid KidSize 3

Fig. 3. Team Cyberlords + Falconbots scoring at RoboCup 2012, Mexico City

This year we intend to participate using only our three humanoid robots
(shown in Fig. 4), whose hardware architecture is described in full in the accom-
panying specification sheets.

One major change in our newest architecture (T3) is the fact we are using
two GUMSTIX OVERO FIRE units, one for the vision system and the other for
locomotion, perception and decision, plus an RCB4 for servomotor interface.
The three computing units fit perfectly into a small-sized box which can easily
be removed from the body of the robot for maintenance (see Fig. 5).

Architecture T1 Architecture T2 Architecture T3

Fig. 4. Three hardware architectures for team Cyberlords La Salle in 2013

3 Task Concurrency in libCyberlords

High performance concurrency is an essential feature of a highly demanding
mobile robotics application, especially in the case where computing power is
restricted by the application, such as in the case of a small humanoid robot. We

-

COWNO U WN -

4 L.F. Lupian, D. Marquez, O. Nelson, F. Lecumberri, I. Sanz

LD

Fig. 5. Processing units for architecture T3

decided to implement concurrency in libCyberlords in the form of cooperative
multitasking. This way can write an application-specific scheduler which lets us
have precise control over how much computing power is dedicated to each task.

Cooperative multitasking is implemented in libCyberlords as an abstract
base class called Cyberlords::Task. Listing 1 shows the essential elements of this
class. The most important ones are the pure virtual methods Task::execute_slice_
and Task::restart_. The method Task::execute_slice. must be implemented in each
concrete descendant to specify what “slice” of code has to execute next. This
method returns a Task::Status to let the scheduler know whether the task has
finished or another slice of code is waiting to be executed. Task::Status is one
of Error, Busy or Done. The virtual method Task::restart_ lets each concrete de-
scendant specify how to initialize the internal state of the task right before it is
started by the scheduler.

Listing 1. class Cyberlords::Task

class Task

protected:
virtual Status execute_slice_(void) = 0;
virtual void restart_-(void) = 0;

public:
Task (void);

Status execute_slice (void);
Status status (void);

}s

4 Hardware Abstraction

Abstracting hardware in a mobile robot application helps isolate the implemen-
tation details of the lower software levels from the decision layer. In this way
the higher decision layer can be designed uniformly for all humanoid robots re-
gardless of their hardware differences. Hardware components in a mobile robot
can be classified as “perception hardware” and “locomotion hardware”. In Iib-
Cyberlords, a different approach was taken to implement abstraction on each of
these two classes of hardware components.

SISO

© 00Uk WN -

[N TR

Cyberlords RoboCup 2013 Humanoid KidSize 5

4.1 Locomotion Abstraction

Within IibCyberlords the basis for locomotion abstraction is implemented in
class Cyberlords::MotionBehavior. Listing 2 shows the essential components of
this class, which are the pure virtual methods MotionBehavior::play and Motion-
Behavior::stop. All concrete descendants of this class must implement these two
methods in order to specify each atomic motion behavior. The list of motion be-
haviors is application-dependent. For the case of playing soccer a total of thirty
motion behaviors are to be specified. Among them: IniLftStepFwd, IntLftStepFwd,
FinLftStepFwd, IniLftStepRev, LatSteplLft, KickLft, FaceUpStandUp, Squat, Sit-
Down, Divelft.

Listing 2. class Cyberlords::MotionBehavior

class MotionBehavior: public Task

virtual int play(void)
virtual int stop (void)

0;
0;

}s

Another important component of locomotion abstraction is the class Cyber-
lords::MotionBehaviorEngine, where the developer must register each of the mo-
tion behaviors specified for the hardware architecture. A simplified version of
this class is shown in Listing 3.

Listing 3. class Cyberlords::MotionBehaviorEngine

class MotionBehaviorEngine: public Task

protected:
void register-motion_-behavior
(
MotionBehavior :: Enumerator id ,
MotionBehavior &motion_behavior
)
public:
int play (MotionBehavior:: Enumerator id);
int stop (void);

}s

4.2 Perception Abstraction

The abstraction of perception hardware components is implemented for each
architecture by defining a set of abstract questions such as: HavelFallen, Wherels-
BallRelativeToMe, WhereAmIRelative ToField, WherelsRivalGoalRelative ToMe. These
questions are abstract in the sense that the answer does not represent a nu-
meric value but rather an abstract meaning. Listing 4 shows a sample abstract
question for which the possible abstract answers are Not, AlmostFront, Front,
AlmostBack, Back, AlmostLeft, Left, AlImostRight, Right. In this way, the decision
layer is isolated from the implementation details that differentiate each hardware
architecture.

Listing 4. class Cyberlords::HavelFallen

class HavelFallen: public Task

public:
HavelFallen (void);
HowFallen answer (void);

b

-

NO U WN e

COWNO U WN -

6 L.F. Lupian, D. Marquez, O. Nelson, F. Lecumberri, I. Sanz

5 Decision Layer

Each abstract question is associated with an abstract boolean condition at the
decision layer. This is done using the abstract base class shown in Listing 5.

Listing 5. class Cyberlords::Condition

class Condition

public:

virtual ~Condition (){};
virtual bool eval(void) = 0;
virtual Condition* clone (void) const = 0;

}s

Listing 6 shows a sample abstract condition which indicates whether the
robot fell or not.

Listing 6. class Cyberlords::ConditionRobotFallen

class ConditionRobotFallen: public Condition
{
private:
HavelFallen &have_i_fallen ;
public:
ConditionRobotFallen (HavelFallen &have_i_-fallen_.);
bool eval(void);
Condition* clone (void) const;

}s
#define CL.ROBOT-FALLEN ConditionRobotFallen (have_i_fallen)

At the decision layer IlibCyberlords implements two abstract descendants
of Cyberlords:: Task: Cyberlords::State and Cyberlords::StateMachine, see Fig. 6.
These two classes, in combination with Cyberlords::Condition are the basis for
constructing decision behaviors in IibCyberlords based applications. The fact
that Cyberlords::StateMachine is a descendant of Cyberlords::State is how a hier-
archy of state machines can be built to specify complex behaviors for simpler
ones.

| Cyberlords::Task |

T

| Cyberlords::State |

|

| Cyberlords::StateMachine |

Fig. 6. Task-State-StateMachine hierarchy in libCyberlords

One powerful feature of libCyberlords is a metalanguage that is used to con-
struct state machines using simple transition tables. The class Cyberlords:: Transition
is essentially a triplet composed of an origin state, a destination state and a
Cyberlords::Condition. Listing 7 shows a sample code written using the State Ma-
chine Metalanguage, which represents a simple behavior for getting up after a
fall. This state machine has only two states: INITIAL and GETUP. As long as
the condition ROBOTFALLEN is true the state machine will transition to GETUP

0O A WN

© 00N U W

Cyberlords RoboCup 2013 Humanoid KidSize 7

otherwise it exits. More complex behaviors can be constructed by defining simple
state machines and then composing them into a hierarchy. For example, Listing
8 shows a state machine with five states, out of which four are state machines
themselves: WALKTOBALL, RUNTOBALL, AIMATGOAL, KICKATGOAL. Listing
8 also shows more complex high level conditions, which are another important
feature of libCyberlords.

Listing 7. GetUp State Machine

// Origin Destination Condition
//
RT(INITIAL, GETUP, ROBOT-FALLEN)
RT(INITIAL, EXIT, DEFAULT.TRANSITION);
// ; N
RT(GETUP, GETUP, ROBOT_FALLEN)
RT(GETUP, EXIT, DEFAULT_TRANSITION);
// +
s s

Listing 8. Walk and get up
// Origin Destination Condition
// ’
RT(INITIAL, WALKTOBALL, PERCEIVE_BALL && BALL_D (Near))
RT(INITIAL, RUNTOBALL, PERCEIVE_BALL && BALL_D(Far))
RT(INITIAL, AIMATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && !GOALO(Front));
RT(INITIAL, KICKATGOAL, PERCEIVE.-BALL && BALL.D(OnFeet) && GOAL-O(Front));
RT(INITIAL, INITIAL , DEFAULT.TRANSITION)
//
RT(WALKTOBALL, RUNTOBALL, PERCEIVE_BALL && BALL_D(Far));
RT(WALKTOBALL, AIMATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && !GOAL.O(Front));
RT(WALKTOBALL, KICKATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && GOAL.O(Front));
RT(WALKTOBALL, INITIAL , DEFAULT_TRANSITION)
// ;
RT(RUNTOBALL, WALKTOBALL, PERCEIVE_BALL && BALL_D(Near))
RT(RUNTOBALL, AIMATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && !GOAL.O(Front));
RT(RUNTOBALL, KICKATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && GOAL.O(Front));
RT(RUNTOBALL, INITIAL, DEFAULT.TRANSITION)
//
RT(AIMATGOAL, KICKATGOAL, PERCEIVE_BALL && BALL_D(OnFeet) && GOAL.O(Front));
RT(AIMATGOAL, INITIAL, DEFAULT_TRANSITION)
//
RT(KICKATGOAL, INITIAL, DEFAULT_TRANSITION)
I+

An important thing to notice in the previous two listings is the fact that
all decision behaviors are specified independently of any implementation details
from the lower layers. This means that these state machines are directly portable
among different hardware architectures without modification as long as the same
motion behaviors and abstract questions are implemented. For the case of soccer-
playing robots, this means that as long as a humanoid robot has the hardware
features for playing soccer it should be possible for it to share libCyberlords de-
cision behaviors with other soccer-playing humanoid robots regardless of their
hardware differences.

6 Conclusion and Future Work

We have described the hardware and software features of the humanoid robot ar-
chitectures to be used by team Cyberlords La Salle in the RoboCup 2013 world
championship. Our current work is concentrated in reorganizing and consolidat-
ing the humanoid robot library we introduced in mid 2011 (libCyberlords). We
are in the process of organizing the software project under cmake so that it can
easily be compiled on different hardware platforms and development tools. Using

8 L.F. Lupian, D. Marquez, O. Nelson, F. Lecumberri, I. Sanz

cmake we will also be able to implement automated testing so as to ensure the
reliability of libCyberlords. The project will be released as a git repository to
facilitate sharing of code and concurrent development. It is our hope to be able
to release the first public version of libCyberlords before RoboCup 2013.

Another focus area for our current efforts is turning the State Machine Met-
alanguage, which is already present in libCyberlords, into a complete language
by developing a language-specific compiler which will simplify even further the
process of specifying states and state machines for the decision layer of libCy-
berlords based applications.

Acknowledgements

This project is supported in part by CONACyT, the Mexican Robotics Federa-
tion and the Red Nacional de Robdética y Mecatronica.

Team Members

Team Cyberlords La Salle for 2013 will be integrated by at least the following
people:

— Team leader: Prof. Luis F. Lupian.
— Team members: Diego Marquez, Iker Sanz, Omar Nelson, Francisco Lecum-
berri, Guillermo Oviedo, Fernando Chéavez.

References

1. Lupidn, L.F., Romay, A.l., Monroy, P., Espinola, A.F., Cisneros, R., Benitez, F.:
Cyberlords RoboCup 2009 Humanoid KidSize team description paper. In: RoboCup
World Championship, Graz, Austria, RoboCup Federation (July 2009)

2. Lupian, L.F., Romay, A., Espinola, A., Cisneros, R., Ibarra, J.M., Gutiérrez, D.,
Hunter, M., del Valle, C., de la Loza, K.: Cyberlords RoboCup 2010 Humanoid
KidSize team description paper. In: RoboCup World Championship, Singapore,
RoboCup Federation (June 2010)

3. Lupidn, L.F., Romay, A., Espinola, A., Marquez, D., Reyes, D.M.: Cyber-
lords+Falconbots RoboCup 2012 Humanoid KidSize team description paper. In:
RoboCup World Championship, Mexico City, Mexico, RoboCup Federation (June
2012

4. LupiZ’m7 L.F., Romay, A., Espinola, A., Ramirez, E.: Cyberlords RoboCup 2011
Humanoid KidSize team description paper. In: RoboCup World Championship,
Istanbul, Turkey, RoboCup Federation (July 2011)

5. Lupidn, L.F., Romay, A., Espinola, A.: Vision Based Localization of Humanoid
Robots by Inverse Pose-Estimation Using a Small Set of Fixed Landmark Features.
In: Robotic Symposium, IEEE Latin American, Bogotd, Colombia (October 2011)

6. Romay Tovar, A.L.: Visién computacional para problemas de estimacién de pose.
Master’s thesis, Universidad La Salle, D.F., México (2011)

7. Espinola Auada, A.F.: Sistema de visién de un robot humanoide en un ambiente
semi estructurado. Master’s thesis, Universidad Nacional Auténoma de México,
D.F., México (2011)

	Cyberlords La Salle Letter of commitment for RoboCup 2013
	Cyberlords_KidSize_2013_TDP__

