Abstract. This document describes the hard- and software of the RoboCup teen size team FUB-KIT 2014. Team FUB-KIT is founded 2012 on a collaboration between Freie Universität Berlin and Kyushu Institute of Technology. The research is aimed at development of bio-inspired legged mechanisms and their control. Both research groups have a long and successful history in Robotics research as well as in RoboCup. Team FUB-KIT attended successfully in RoboCup 2013 Einhoff and won the 3rd Place of the competition in Teen-Size league.

1 Introduction

Despite more than two decades of research, bipedal locomotion is still extensively studied. They cover vast areas, from mechanical construction to stabilization and performance optimization. Recently, bio-inspired approaches have gained more attention, in the quest to bridge the performance gap between artificial and biological systems. The role of bi-articular muscles in bipedal locomotion has long been studied [9, 1, 10]. The concept became attractive again in the context of mechanical bipedal walkers. Most of the bio-inspired works today provide one-to-one mechanical versions of the human musculoskeletal system and try to achieve the same functionality using engineering techniques.[2, 3, 8] A muscle like functionality is required for these systems to work properly. Such actuators are unfortunately non-existent today. We therefore consider to get our bio-inspiration in another way. We try to reverse engineer the musculoskeletal system, to understand its concepts and try to adapt it for the requirements of the mechanical robot considering today’s mechanical engineering feasibilities.

This paper is organized as follows: The next section describes the hardware concept of the team FUB-KIT. Section 3 summarizes the electronics of the robots. Software architecture is explained in section 3.

2 Hardware Description

2.1 Mechanics

2.1 Mechanics The mechanical design of the FUB-KIT robots is based on the biologically inspired Multi Joint Mixed Actuation, shortly called MJMA. MJMA
introduces a new actuator space [5], which is mechanically projected to the joint space. MJMA projection separates the degrees of freedom in a portable way for the control. Problems, such as joint synchronization, energy loss minimization and leg reaction time, are addressed by MJMA.

2.2 MJMA
Humanoid robots are known to be complex due to several difficulties in their construction as well as in their control. The most challenging problem is the synchronization of the multi-joint chains. The commercially available servomotors provide a limited range of controllability, i.e. in position as well as in speed. It is a challenging task to drive a servo motor to follow a highly non-linear motion with an unknown non-constant load. The higher the number of actuators get, the more impossible becomes their control. Energy recycling is essential for an efficient running. [1] There exist servo-motors capable of back conversion and recycling of the mechanical energy, but they are fairly unknown. In fact there is an inverse relation between the precision of a servomotor and its energy efficiency. Additionally, another problem arises, when one tries to combine the compliance as a mean to elasticity with the precise synchronization of the joints as there is a clear trade off between these two properties. Note that the required elasticity of the leg may only act in the radial direction, whereas in other directions the system should remain rigid and precisely synchronized. MJMA mechanically rearranges the degrees of freedom so that the radial component of the leg movement is entirely generated by a single actuator. This takes a great contribution in the solution of the synchronization problem. Further, it would be possible to add passive compliance in form of springs or other energy accumulators to the radial movement without affecting the other degrees of freedom. This can significantly reduce the energy loss due to the heel strike.

2.3 Actuators
The weight of the robot can be reduced to a great extent by using MJMA. It becomes possible then to involve smaller actuators, which in turn, contribute to the weight reduction even further. In our construction we use a mixture of ROBOTIS MX-28 and MX-64. The driving torque is transferred to the joints using a cable system. Figure 1 shows a simplified diagram of the actuation.

3 Electronics
3.1 Vision Processor
To achieve a fast and reliable computer vision, an embedded vision processor is developed. The module is capable of pixel level processing of high resolution images obtained from an attached color CMOS image sensor. Several form- as well as color-based functions are developed and can be invoked upon request. The most used algorithm is “Gradient Vector Gridding” described in [7].
3.2 Motion Processor

The complete task of low level motion control is assigned to a separate processor unit. As all servomotors are daisy chained on a single bus, there is a considerable traffic to handle with. On the other hand it is of great importance that the robot remains reliable even if the main processor is not available for a short while. In this case low level reactive motions can continue running (the so called zombie mode).

![Fig. 1. Realization of the MJMA Robot using cable transfer](image)

3.3 Main Processor

Less critical functions such as localization, navigation and strategy planning are assigned to a Linux embedded platform. The main processing unit is the commercially available ARM11 development board IGEPv2. It is equipped with 128MB internal flash and 512MB DDR2 RAM. Both wired and wireless LAN connections can be established to the unit which allows the robots to communicate with each other as well as with the game controller. To communicate with motion controller unit one of the available serial ports is used.

4 Software Description

Figure 2 shows the Architecture of the software running on the robot. The software of the robots is completely developed in our team and will be released to public every year after RoboCup competitions.
4.1 Computer Vision

Pixel level computer vision is done on an embedded module. Following results are available from the Image processor:

Region-Growing provides a list of the contiguous regions of the same color in the image. The algorithm is proper for finding colored objects such as the goals and the ball.

Gridding reduces the resolution of the captured image without much loss in the colored object information, using priorities.

GVG reports a list of contours in the image indicated by the position and orientation of the segments. The algorithm is used for the self localization of the robot based on the field lines.

Higher level image processing and world modeling is hosted by the main processor. It includes the following tasks:

Self-Localization using a particle filter with local suppression. It reports the absolute position and orientation of the robot on the field using the field lines and goals.

Ball-Modeling gives a model of the ball in the local coordinates system of the robot. It is updated using the odometry and visual feedback.

Obstacle-Detection models the obstacles on the local coordinates system of the robot and also tries to identify them.

4.2 Behavior Control

For behavior control a multilayer, modular system is designed. A graphical user interface facilitates the connection of existing modules and definition of new ones.
The system works on a data/event flow basis. The modular construction helps rapid recycling of the existing functional blocks. Modules can either be directly programmed in C or build from other modules. The development environment generates an intermediate code for execution on the robot.

4.3 Motions

Two basic groups of motions are defined and handled separately: Static and Dynamic motions. Static motions are implemented using keyframes and interpolation. Dynamic motions are in contrast calculated and generated using dynamic feedback systems. Walking/Running is the most important dynamic motion. For a stable walking gait we have so far developed in 3 main streams:

Linear-Control In this method a deterministic parametrized gate is generated. Several linear controllers adjust these parameters based on the real time feedback gained from the joints or the gyro. For lateral stability the technique described in [6] is used.

FIR-CPG The method is similar to the classic CPG. However the nodes are replaced with FIR filters, whose parameters are adjusted using machine learning techniques.

SNN-CPG In this approach we draw inspiration from neuroscience and simulate the CPG using spiking neural network (SNN). SNNs are more biologically plausible than other artificial neural networks, as they use temporal coding (spike timing) instead of rate coding [1]. The SNN-CPG creates the gait rhythm, but inputs from sensors (gyroscope etc.) serve as reex signals that modulate the movement of the limbs. This network setup has been shown to create a more human-like walking pattern [4].

Motions are implemented on the motion processor of the robot. A serial interface allows the communication between motion and cognition layers.

5 Results

Figure 3 shows several frames of the walking cycle. An omnidirectional open-loop CPG is used for the test. Table 1 shows the maximum reached speeds in this test.

Table 1. Maximum walking speeds reached by the platform

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>28 cm/sec</td>
</tr>
<tr>
<td>Backward</td>
<td>16 cm/sec</td>
</tr>
<tr>
<td>Sideways</td>
<td>32 cm/sec</td>
</tr>
<tr>
<td>Rotation</td>
<td>85 deg/sec</td>
</tr>
</tbody>
</table>
Fig. 3. Several frames of a walk cycle performed by the platform
6 New Achievements and Plans for 2014

For robocup 2013 we were able to conduct a successful joint work. Using IT solutions for software development and project management we cooperated towards the design of our 2013 robots. The mechanical concept and the draft mechanical design is performed in Berlin, the design is then optimized and finished in kyushu. We finally started manufacturing two examples of the robot on both sides. Parallel to this our software team developed the necessary algorithms for soccer playing. We applied minor changes to the design to solve material sourcing issues on either side.

During robocup 2013 both robots were finally brought together. We started an intensive work to cope our software to both hardware platforms, and could finally make both units functional. Our joint team, FUB-KIT, won the third place in robocup humanoid Teen-size league.

For 2014 following improvements are planned to the hardware platform: Finite element analyses of the structures for reduction of the redundancies, increasing the reliability of the legs and improving the power transfer system. In software, we plan to improve the self localization, to increase the degree of cooperation using wireless network and finally to develop an interface between simulink and the low level software of the robot.
Bibliography

