
Berlin United - FUmanoids

Team Description Paper

for RoboCup 2015

Daniel Seifert, Lutz Freitag, Jan Draegert, Simon Gene Gottlieb, Roman
Schulte-Sasse, Gregor Barth, Malte Detlefsen, Jan Bernoth, Niklas Rughöft,

Michael Pluhatsch, Martin Wichner, and Raúl Rojas

Institut für Informatik, AG Intelligente Systeme und Robotik,
Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany

http://www.fumanoids.de

Abstract. This Team Description Paper describes the humanoid robot
team Berlin United - FUmanoids and presents robots for participation
in RoboCup 2015. A general overview of the team and its history will be
given as well as insight into research interests and particular areas of the
robots' software and hardware.

1 Introduction

Berlin United - FUmanoids is a humanoid robot team participating in the Hu-
manoid KidSize League at RoboCup. The team was founded in 2006 as the
successor of the Mid- and SmallSize team FU-Fighters.

During the time of participation at RoboCup, the team had signi�cant suc-
cesses in competitions, achieving 2nd place in 2009 and 2010, 3rd place in 2007
(its debut competition), 4th place in 2011 and reaching the quarter �nals in
2008, 2012 and 2013. In 2014 the team scored 1st place in both the RoboCup
Iran Open and the RoboCup German Open competitions.

This paper presents the team's research interests, contributions to the Robo-
Cup community as well as the hardware and software of the FUmanoid robots.

2 Research and Contribution

The main research interests are:

� dezentralized control architecture for humanoid robots
� image processing to reliably classify YUV-triples as logic colors even when
light conditions change

� vision and detection algorithms handling the real-time requirements of soccer
games

� localization algorithms calculating the robot's position along all 6 degrees of
freedom

http://www.fumanoids.de


� path planning to avoid obstacles and approach the ball quickly

� fast and stable walking

The team is committed to further the Humanoid League and the research
exchange between teams. For this reason the team is one of few Humanoid
League teams that releases their source code and schematics for hardware com-
ponents1. The software release ([3]) consists of FUmanoid, the main program
running on the robot, and FUremote, the control and debugging program based
on Eclipse/RCP. Additionally, the developed framework is also released ([2]).
The custom built hardware is part of the release [4] as well as the software run-
ning on the microcontrollers. Theses and papers on the robots are available on
our website2.

3 Hardware

3.1 Mechanical Structure

The current robot model was designed and constructed with respect to simplicity
and both human-like proportions and capabilities. It features a parallel kinematic
leg design, with an additional servo motor added to allow the torso to move
laterally, imitating the human spine movement that keeps the torso upright.
The total height is 65 cm.

For actuation, we use Dynamixel servo motors from Robotis Inc., namely
RX-28 and RX-64 servos. They provide 20 degrees of freedom � 5 per leg, 2 for
upper-body movement, 3 per arm and 2 in the head (�gure 1). To remove jitter
caused by worn-out potentiometers, we modi�ed the servos to use a hall sensor
(magnetic encoder) for reliable measurements of the current joint angle.

3.2 Sensors

We equipped the robot with the following sensors:

Actuators: The feedback of the actuators includes the current joint angle, mo-
tor speed and load.

IMU: The sensor board includes an integrated 9 axis IMU, featuring gyros,
accelerometers and magnetometers. A Kalman �lter provides �ltered output
that is used by the robot for stabilization as well as calculation of the camera
perspective in order to obtain localization data.

Camera: The robot is equipped with a commercially available webcam (Logi-
tech HD Pro Webcam C910). Using a resolution of 640x480 (VGA) it delivers
30 frames per second.

1 http://www.fumanoids.de/opensource
2 http://www.fumanoids.de/publications

http://www.fumanoids.de/opensource
http://www.fumanoids.de/publications


Fig. 1: Current model (left) and its kinematics (right)

3.3 Main Computing Unit

In order to satisfy increased performance requirements, we are using an ODROID-
X2 board. This board features an Exynos4412 Quad-core ARM Cortex-A9 CPU
clocked at 1.7GHz. It provides all necessary extension interfaces, such as multi-
ple USB ports (for the camera and the WiFi module), Ethernet and an UART
connection.

We utilize Linux as a operating system, based on a custom-compiled kernel
and the Linaro distribution.

3.4 Sensorboard

In order to improve communication with actuators and sensors, we developed
our own sensor board. It supports connecting the actuators of each leg and the
upper body separately in order to set and get servo positions in parallel. Two
ARM Cortex M4 processors, clocked at 168MHz each, handle both the Kalman
�lter, which is used by the IMU, and the e�cient servo communication. Data
and actions, e.g. movements of the robot, that are triggered via a dedicated serial
connection, can be requested by the main unit.

3.4.1 Hardware Features To prevent the servo motors from damage we
installed several safety mechanisms on the robots. A typical condition resulting



in damaged electronics was the deisolation of the servo wires. This condition led
to an overvoltage on the data lines towards and away from the servos destroying
the ICs connected to the data wires. In order to prevent damage a TVS-diode is
attached to each bus to drain overcurrent to ground in case of an overvoltage.
Furthermore a comparator is attached to each data wire acting as an o�-switch
when the voltage climbs above a threshold.

4 Software

4.1 Inverse Kinematics

Robots are actuated with servomotors which are either con�gured with target
angles and velocities or torque. Setting the desired parameters in a �raw� fash-
ion is very cumbersome when dynamic movements shall be performed. Inverse
kinematics creates a di�erent way of describing motions [1]: Instead of manually
calculating the target angles for a given pose we create tasks which represent
some target con�guration. An example: We want the robot's right hand - this is
the task 's ende�ector - to move to a speci�c point in the torso's reference coor-
dinate frame - this is the task 's base coordinate frame. The inverse kinematics
calculates the angle changes in the motors necessary to accomplish the task. A
task calculates the following:

Jacobian A matrix which represents the movement of the ende�ector for in-
�nitesimal angle changes from the perspective of the task 's base coordinate
frame.

error vector A vector in the task 's base coordinate frame representing the
current error. This is usually how much and in which direction the ende�ector
has to change.

The inverse kinematics implements the ability to formulate multiple levels of
tasks. This is useful when some tasks are more important than others and the
less important tasks should not change the error of the more important ones.
Those tasks are solved in the remaining degrees of freedom (redundant servos)
of the more important tasks. Furthermore it is possible to de�ne multiple tasks
for the same level of importance including a weighting for each task.

4.2 Locomotion and Stability Control

The walking system of the FUmanoid team is based on dynamic trajectories that
are designed to realize Zero Moment Point (ZMP) optimization. These motion
patterns allow the robots to walk in every direction with speeds up to 25 cm/s.
The walker is implemented with usage of the inverse kinematics solver shown in
4.1.

Walking is mostly de�ned from the perspective of the feet and involves the
whole body dynamics. The tasks (in terms of inverse kinematics tasks) involve
the movement of the feet with respect to each other and the movement of the



center of mass (COM) with respect to the supporting foot. The target positions
of the COM-tasks are based on an inverted pendulum model of the whole body.
The lateral velocity of the COM is matched to either keep the linear momentum
inside the support polygon (�rst step phase, swing foot is behind support foot)
or to accelerate towards the target position of the swing foot. As long as the
tasks can be ful�lled this su�ces the criteria of a ZMP based walker. Due to the
utilization of the whole body dynamics even bodyparts which are not intuitively
associated with the process of walking (e. g. arms) are used to manipulate the
COM and its dynamics.

The walker is designed to be usable on other robot platforms as well since
the static properties (e. g. where is the COM in the idle position; what is the
geometry of the robot) are once calculated with the forward kinematics and used
as parameters for trajectory generation. This leads to a highly reusable walking
process which is highly customizable as well.

Though the actual (joint-)movements are not de�ned within the walker the
gait is very similar to natural bipedal beings.

4.3 Computer Vision

The vision module consists of independent layers:

Color Analysis The color analysis is done on a high dimensional cluster clas-
si�cation base. Each cluster is built around sample pixels which represent
a logical color (green/�eld, white/goal, white/�eld lines, . . . ). A further de-
scription on the algorithm is given in 4.3.1

Field Contour Analysis The �eld contour divides the image in two parts
where the part above the �eld contour contains only information about ob-
jects outside the soccer pitch and can therefore be discarded. The other part
contains the visible areas of the pitch and is used for further image process-
ing steps. The calculation of the �eld contour is based on vertical scan lines
of green classi�ed pixels.

Object Extraction In the object extraction step all the relevant objects on
the pitch are constructed out of the features. The currently provided objects
are ball, goals, �eld line points and obstacles. The positions of goal poles in
the image are extracted by sampling along the �eld contour. For extracting
the ball, �eld line points and obstacles a scan grid is used. The grid's density
is dynamically generated for each frame based on the expected size of the
objects. The scan grid will search for possible location of objects based on
the game color. Given a positive game color evaluation a shape based check
is performed. This approach in combination with the color analysis allows
to detect multiple-colored balls.

4.3.1 Color Class�cation Every logical color is modeled as a Gaussian Mix-

ture Model (GMM), meaning a weighted sum of Gaussian (Normal) distributions.
This method has been known to describe the typical shades and variations of the
colors quite well. The model also accounts for the case of multicolored items like



the new ball, since it will just �t separate Gaussian components to the di�erent
colors. The training of the parameters is done right before the game so the indi-
vidual lighting and location conditions are considered. The samples needed for
the training are created by identifying the objects to be classi�ed in the camera
image. To �t the model to the samples the Expectation-Maximization algorithm

is used, which can be thought of as a kMeans clustering algorithm with variable
covariance matrices. The exact number of Gaussian components is calculated
automatically and individually for each logical color according to its complexity.

(a) Typical camera output (b) The classi�cator di�erentiates between
the logical colors ball, �eld, �eld line, goal
and unknown

Fig. 2: Raw camera picture and the associated color classi�ed image

4.3.2 Object Extractors As described in 4.3.1 there are logical colors en-
coding objects in the game environment. The robot transforms each raw (YUV)
camera image to a color classi�ed image whose pixels encode the logical colors

of each raw pixel. Thereby each pixel can represent multiple logical colors at the
same time using bit masks. Further we calculate an integral image on the color
classi�ed image. The integral image's pixels contain an integer for each logical

color with the amount of pixels of this color in the rectangle from the top left
to the pixel's coordinates.

pintegral(x, y) =

x∑
i=0

y∑
j=0

pcolor(i, j)

With pintegral(x, y) as the pixel at x, y in the integral image and pcolor(i, j) as
the pixel at i, j in the color classi�ed image.

With the integral image we can e�ciently search for bounding boxes of blobs



with a speci�c logical color. The search (shrink operation) is performed as a bi-
nary search for each parameter of the boundary box (left bound, right bound,
top bound, bottom bound). Subsequently, the color coverage of the box is calcu-
lated. If it undercuts a threshold the shrink operation is repeated in each of the
four quadrants of the shrunk bounding box. This is implemented recursively.

This procedure is used to detect the ball, goals, �eld lines and obstacles. Since
this year's rule changes, the ball has mostly the same color as the �eld lines.
We take this into account by testing each ball candidate � each bounding box
containig white � for speci�c �ball-like� features we have trained. In advance of
each match the ball is shown to the robot. It detects the area in which the ball
is located and creates both a feature descriptor of certain areas of the ball and a
matrix which transforms the feature vector to a rotation invariant feature space.
During the game we calculate the feature descriptor for each ball candidate and
match it against the trained feature vector.

4.4 Modelling

4.4.1 Object Modelling In order to track the ball, obstacles and goals, we
employ extended Kalman �lters. The ball model involves the position and the
velocity of the ball. The goals are modelled by four independent poles. This ap-
proach allows us to distinguish between the opposite and the own goal. Obstacles
are modelled through dynamic amount of Kalman �lters. They also keep track
of the team colors.

4.4.2 Self Localization The current self localization is done by using an
extended Kalman Filter which estimates 6-DOF. This approach allows us to
track the position of the robot.

The extended Kalman Filter uses a series of measurements observed over
time to produce estimates of unknown variables. It uses a two-step process. The
prediction step predicts the current state and its uncertainties. This step alter-
nates with the update step. This step corrects the current state with incoming
measurements. Because this �lter works recursively, it can run by using only the
present input measurements and the previously calculated state. This allows real
time application.

In our implementation we capture 6-DOF containing rotation and translation
to estimate the position of the camera. The rotation is represented as a quater-
nion whereas the translation is represented as a vector. In our prediction step
we use a gyroscope, kinematics and the odometry to estimate the new position
of our camera. As measurements we use di�erent visual features extracted from
the camera image, as well as the accelerometer and the computed robot height
provided by the kinematics.

Since this approach only allows us to track the position, we use a di�erent
strategy to guess the initial position. For this we use a list with possible starting
points. We compare observed features in our images to expected features. Out



of this we compute a con�dence value. At the end of our initialization process
we pick the highest con�dence value as our starting position.

4.5 Path Planning

In order to navigate on the �eld, avoid obstacles and approach the ball properly
the robot needs to plan paths. In the previous years our robot's navigation relied
entirely on potential �elds [5]. The advantage of potential �elds is the ease of
describing the environment with respect to its traversability. Yet potential �elds
perform poorly if the robot is at a local optimum, e. g. all in�uencing elements
of the potential �eld cancel each other out at a given position.

Rapidly Exploring Random Trees (RRTs) are robust against local optima but
perform poorly with regards to execution time. We combine the advantages of
RRTs with the advantages of potential �elds to create a robust path planner
with great computational complexity. For each cycle of execution we let the
RRT explore either up to a maximum amount of nodes or a maximum amount
of exploration steps. This caps the size of the tree. After exploration, we optimize
the tree's nodes along the potential �eld. During optimization the distances of a
node to its child nodes are capped to a maximum distance to keep the structure
of the RRT. If the distance between two nodes shrinks below a certain threshold,
the nodes' subtrees are merged into the node closer to the RRT's root. This thins
out the amount of nodes of the RRT which can explore again in the following
execution cycle.

5 Conclusion

With the outlined improvements to the software of the robots we are looking
forward to participate in the RoboCup 2015 competition.

References

1. Howie M Choset. Principles of robot motion: theory, algorithms, and implementa-

tion. MIT press, 2005.
2. FUmanoids. Berlin United Framework 2014, 2014. Available online at http://www.

fumanoids.de/code/framework.
3. FUmanoids. FUmanoids Code Release 2013, 2014. Available online at http://www.

fumanoids.de/code/coderelease.
4. FUmanoids. FUmanoids Hardware Release 2014, 2014. Available online at http:

//www.fumanoids.de/code/hardware.
5. Stuart Russell, Peter Norvig, and Arti�cial Intelligence. Arti�cal intelligence a

modern approach. Arti�cial Intelligence. Prentice-Hall, Egnlewood Cli�s, 25, 1995.

http://www.fumanoids.de/code/framework
http://www.fumanoids.de/code/framework
http://www.fumanoids.de/code/coderelease
http://www.fumanoids.de/code/coderelease
http://www.fumanoids.de/code/hardware
http://www.fumanoids.de/code/hardware

	Berlin United - FUmanoids  Team Description Paper  for RoboCup 2015

