
Bold Hearts Team Description
RoboCup 2017 Kid Size

Sander G. van Dijk, Alessandra Rossi, Daniel Barry, Daniel Polani, Marcus
Scheunemann, and Masood Ahmed

Adaptive Systems Research Group
School of Computer Science

University of Hertfordshire, UK

Abstract. In this paper we describe the structure and the software of
the RoboCup Humanoid Kid Size division team Bold Hearts. We dis-
cuss the construction and the aspects of our software architecture, en-
lightening our solutions to important problems such as the action selec-
tion, vision, stability, and sensorimotor modeling. Finally, we provide an
overview of the relevant experience and achievements of our team.

1 Bold Hearts

The team Bold Hearts has been founded as part of the Adaptive Systems Re-
search Group at the University of Hertfordshire, Hatfield (UK). The team has
participated in RoboCup since 2003 in the simulation leagues. Since the 2013
RoboCup competition, the team moved to the Kidsize humanoid hardware league.

2 Robotic Hardware and Design

We have used the standard DARwIn-OP robotic platform to make up our robotic
team since the 2013 RoboCup World Championship in Eindhoven, the Nether-
lands. In the years after the transition, we adapted the DARwIn-OP framework
and developed a full framework, including debugging tools, web-based inspection
tools and other necessary modules to enable the robots to address the chang-
ing and increasingly challenging environments and rules of the game. While
significant achievements can already be reached using the traditional DARwIn-
OP hardware by judicious development of software controls (demonstrated for
instance by our team winning the 2016 Iran Open), the need to adapt the hard-
ware itself has become more and more prominent. The Bold Hearts have there-
fore moved towards developing custom robot hardware, utilizing 3D printing
facilities.

A particular advantage of 3D printing technology is that it will allow us to
develop modified parts for the robot, and equip them step-by-step with newer
and more capable electronics and motors. Observing the developments of other
teams in the league, we conclude that a significant risk can be involved with cre-
ating a new platform from scratch, and that it can take a long time to get such



Fig. 1. Screenshot of 3D arm design, including implemented Dynamixel MX28 model.

a platform to perform at a competitive level. Our team stems from Computer
Science and has a strong software design and development foundation, which was
a major contribution to our past successes while still gaining experience working
with hardware. We believe that modern well established practices from software
development can be applied to robot design as well, most notably agile processes
including rapid prototyping and rapid iterations. In practice, this means that it
is a part of our team’s research to develop systematic techniques to link evo-
lutionary changes of various robotic parts to respond to requirements in other
modifications in robotic design, and also to support this by suitable incremen-
tally adaptive learning algorithms. For example, rather than determining the full
body layout up front, one can iteratively update parts based on requirements
and added value in response to previous changes, such as lengthened arms to
help standing up following changes to feet and/or legs to be better able to walk
on high grass.

We have chosen to design our robot parts using OpenSCAD, instead of using
a proprietary 3D CAD system. One of the main reasons is that the design is
captured as plain text, in a programmatic and parameterised format. This allows
the development of the designs to be tracked in version control by Git, created in
any editor of choice, and be easily shared and reused. It makes it much easier to
publish designs in a usable way, compared to a vendor-specific binary format, or
post-processed 3D formats that remove ability to adapt a design easily such as
STL. With this in mind, we intend to share our designs in the future, including
models we have created of popular components, such as a range of Dynamixel
motors and control boards. Figure 1 shows the OpenSCAD design process in
action.



2.1 Long Term Experimentation

3D printing technology allows us to exploit different materials and structures to
study different hardware and different robot morphologies and designs. We are
equipped to include the study of non-stiff, elastic body parts with customized
morphology in this endeavour, exploring the potential of ideas for “intelligent
material design” stemming from ideas from morphological computation.

Our interests also lie in experimentation with alternative sensrs, for instance
by using cameras based on the principle of event-based imaging and to study
the viability of their motion-detection capabilities for the specific tasks of the
RoboCup scenario.

3 Vision

As described in our team’s description paper of last year, the vision system of
our robots is constructed around a highly optimised run-length encoding based
connected component detection system, that is able to extract a range of compo-
nent features in a single pass over the image, such as size, shape, orientation and
colour/shade distribution, to be used in classification of the detected objects.
Although this system was still able to perform competitively in the previous
season, a more elaborate method for object detection is required in the ambigu-
ous and less structured environment of the current RoboCup Humanoid League
scenario.

For this, our team is developing Convolutional Neural Networks (CNN) as a
stage in the object detection pipeline. Such methods are very popular, however
often also very computation intensive and used in the context of very large
large datasets. Nevertheless, we start seeing the use of CNNs in the much more
computationally restricted domain of RoboCup, for example in the best-paper
winning work of team Hamburg Bit-Bots[7]. An efficient solution is however hard
to find, the aforementioned authors for instance report that running a trained
network takes approximately 0.3 seconds per image on their robots, which is
not enough to keep track of a dynamic football game. We are researching two
directions to overcome this problem.

Firstly, we move away from ‘traditional’ deep networks that consist of con-
volutional ’feature detection’ layers, followed by one or more fully connected
layers to arrive at an output over the whole input image. It is often these fully
connected layers that are responsible for the bulk of the network’s weights, and
as such for much of the training and processing time. More recently, so called
Fully Convolutional Networks (FCNs) have been developed[4], specifically for se-
mantic segmentation, which is the problem of assigning semantic labels to each
image pixel. This fits exactly with the ubiquitous colour based labelling used by
many RoboCup teams, so the first benefit of these methods is that their out-
put can be directly integrated into existing vision systems like ours. The second
crucial benefit is that the number of weights in the network is much smaller,
because the heavy fully connected output layers are basically replaced by much



lighter (de)convolutional layers. Finally, a FCN can in theory be applied to im-
age patches of any size, so can be run on smaller regions of interest after a low
level preprocessing step, to save further computation time.

Besides this conceptionally different approach, we also work on more technical
optimisation: the recent explosion of deep learning applications is partly fuelled
by the power of GPU computation. It is not feasible to integrate the latest
generation of energy hungry desktop GPUs into football robots yet, but more
and more smaller footprint and embedded solutions start to become available.
For instance, the Odroid XU4 platform our team is experimenting with contains
a Mali-T628 MP6 ARM GPU capable of running OpenCL computations. We
are working to develop specialised CNN implementations for this hardware to
help obtain the required frame rate.

4 Stability

Maintaining balance and stability is another problem that has become much
more prominent these years, due to the use of artificial turf as playing surface.
The robots are no longer able to rely on a relatively hard and stable flat ground.

Firstly, the robots must be able to judge the current orientation. For this, we
previously implemented a method to fuse measurements of the tri-axes gyroscope
and the accelerometer to keep track of the orientation of the robot, using a gradi-
ent descent-based algorithm [5]. This algorithm operates by integrating changes
in orientation as measured by the robot’s gyroscope, corrected by evidence of
the orientation measured by the accelerometer, all represented by quaternions:

qest = γqω + (1− γ)q∇, (1)

where qω is the orientation derived from the gyroscope, q∇ is the orientation
found by performing a gradient descent step, and γ ∈ [0, 1] is a trade-off param-
eter. It turns out that a single gradient descent step at each cycle, rather than
performing steps until convergence which would be too expensive, is sufficient
to minimise the error over time [5].

Next, a measure of stability is defined. We have continued our work done
last year on a method based on the rate of change of angular momentum[1]. The
essence of this idea is that for full body stability, if the full moment resulting
from all forces applying onto the robot sums up to zero at the Centre Of Mass
(COM) of the robot; otherwise there is a change in angular momentum rate,
meaning an increase of full body rotation. As shown in Fig. 2, there is a point
(A) where a ground reaction force with a given direction should apply in order
for it to pass through the COM, which is required to arrive at zero momentum.

Unfortunately, it is difficult to measure the centre of pressure (P) and the
direction of the ground reaction force (R) directly; only one of our robots is
equipped with foot sensors, and those only provide an estimate of (P), not of
(R). However, if one realises that the acceleration of the COM is proportional
to the sum of gravity and the ground reaction force, the direction of R can be
estimated by the difference between measurement acceleration and gravity. The



Fig. 2. Depiction of dynamics of humanoid robot and their effect on its stability.
Fig. (a) shows the ground reaction force (R) passing through the centre of mass (G),
resulting in conservation of full body rotation. Conversely, Fig. (b) shows a scenario
where R does not extend through G, causing change in rate of momentum. The point
A shows where the ground reaction force should apply, and the distance between A and
P is a measure of instability. Adapted from Goswami and Vinutha[1].

direction of gravity can be deduced from the orientation filter described above,
and acceleration of the COM can be estimated from the robot’s accelerometer
in the robot’s torso. Projecting along the direction deduced in this way, again
using the filtered orientation, one arrives at an estimate of A. It is known that
to be stable, this point should at least fall within the robot’s support polygon,
so the distance of this point from the border, or centre, of this polygon can be
used as a measurement of stability.

Initial results have shown that tracking and controlling this reference point
enables the robots to remain stable to a level similar to when using the COP
directly, which is shown in action in Fig. 3. This year we have been working on
integrating this measure in more aspects of our motion modules, as well as using
reinforcement learning methods (within the Options based framework described
below) to remain stability over extended times based on the stability reference
point.

5 Behaviour and Action Selection

Our behavioural framework is based on the so-called Options model[8]. An op-
tion is a higher level abstraction of an action, specifically forming a temporal
abstraction: an option is not necessarily instantaneous such as low level control
actions, it can be active over a length of time.

Formally, an option is described by three components: an initiation set I that
determines in what states the option can be selected; a policy π that describes
the action selection when this option is selected; and a termination condition β
that (stochastically) determines when the option ends. The case where the policy
directly selects primitive actions amounts to a single level of abstraction. How-
ever, one can also allow the selection of other sub-options, incurring a recursion



Fig. 3. Robots actively maintaining stability. Robot 2 (right) is equipped with FSR
foot sensors and controls measured COP to be in the centre of support polygon. Robot 5
(left) has no foot sensors but derives stability reference point from IMU and orientation
and controls this reference point to be within support polygon

that forms an unlimited hierarchy. Finally, primitive actions can be modelled
as options that always terminated after one step, ensuring we can use a single
structure throughout the whole hierarchy.

The Option model was first formulated in the context of Reinforcement
Learning, and has been used and further developed in that area of research
extensively for the last 15 years. However, without applying RL the framework
is abstract enough to allow for a multitude of implementations of the options,
like finite state machines, artificial neural nets or decision trees.

6 Sensorimotor Modelling

One of the challenges with iterative body model design is the time cost of re-
modeling the robotic dynamics for every newly generated model. As part of
the team effort, we therefore undertake the development of novel techniques for
sensorimotor modelling with the mid-term goal to achieve a more generic and
lightweight intelligent adaptation to novel robotic hardware. The challenge of
recalibrating in short cycles requires a rethinking of robot control development:
it needs to take care of quick and cheap adaptation to new hardware and en-
vironments. For this, traditional control methods need to be complemented by
more generic approaches to robot control.

As one of the research agendas of the team, we investigate a number of con-
cepts which have been developed specifically for the purpose of generic behaviour-
generation, especially empowerment [3]; empowerment was originally developed
as a “taskless utility”, first demonstrated in a highly abstracted RoboCup-
inspired scenario [2]. Empowerment is an information-theoretic nonlinear gener-
alisation of the control-theoretic concept of the combined controllability-observability
matrix and has been successfully used for a variety of generic control scenarios,
both discrete and continuous [6]. It can be interpreted as the “degree of freedom”
locally available to an agent, or, alternatively, as the efficacy of the external part



of the agent’s sensorimotor loop, and can be used in lieu of a reward function to
drive the agent’s behaviour by moving towards regions of higher empowerment.
Notably, it does not need an explicit goal or fully mapped utility landscape to
be computed, but still acts as a “natural” value function in many of the studied
scenarios.

Current work has established a link between tradition control methods and
empowerment (to be published). This will accelerate adoption of the method-
ology and incorporation into engineering, and our RoboCup team will offer a
main opportunity to do so. In particular, we are interested in expanding the
use of empowerment to deal in a generic fashion with the challenges posed by
varying and ill-defined robotic dynamics — being “ill-defined” is, in a way, an un-
avoidable feature of robots designed by rapid prototyping and 3D-printing, since
both tolerance and specifications are likely to vary much more strongly from
any pre-planned setup. Our goal is to investigate the empowerment measure to
generically produce a number of behaviours, most prominently stabilisation, but
possibly also other desired behavioural patterns with the purpose of avoiding to
have to hand-design them at each hardware development iteration.

One challenge that needs to be overcome for the purpose of using empow-
erment is the forward modelling. Empowerment, different from reinforcement
learning, does not need a reward function, and neither does it require a global
model of its operation space, but it does require a local forward model. Such a
model could be externally provided, but it would be attractive to make use, in
agreement with the spirit of the sensorimotor interpretation of empowerment, of
purely robot-internal information to construct it.

7 Experience and Achievements

Our team has been active in RoboCup since 2002, and hopes to participate
in the Humanoid league in 2017 for the fifth year in a row. Besides the world
championship, we always aim to participate at as many open competitions and
related workshops and meet-ups.

The following are the detailed achievements and contributions of team Bold
Hearts in the Humanoid League over the last few years.

– 2nd round Robocup World Championship 2016 (1st in group)

– 1st Iran Open 2016

– 2nd round Robocup World Championship 2015 (1st in group)

– 3rd German Open 2015

– 2nd Robocup World Championship 2014
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