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Abstract. ITAndroids is a robotics competition group associated to the
Autonomous Computational Systems Lab (LAB-SCA) at Aeronautics
Institute of Technology (ITA). ITAndroids is a strong team in Latin
America, especially in the simulation leagues. Our Humanoid KidSize
team has worked with low cost humanoids robots since 2013. However,
the group recently received a financial aid from ITA to acquire a Robotis
OP2 robot and material to build 4 more robots. This paper describes
our recent efforts, including the software development and our new robot
design based on the DARwIn-OP project.

1 Introduction

ITAndroids is a robotics research group at Aeronautics Institute of Technology.
As required by a complete endeavor in robotics, the group is multidisciplinary
and contains about 40 students from different undergraduate engineering courses.
In the last 5 years, we have achieved good results in competitions, especially in
Latin America. In RoboCup 2D Soccer Simulation, we have placed in the range
10th-12th in the 2012, 2013, 2014, and 2016 editions of RoboCup. In 3D Soccer
Simulation, we have placed in top 12 in the 2013, 2014 and 2015 competitions,
while placing 6th in 2016. In the Latin American Robotics Competition (LARC),
we have been consistently placing in top 2 in both Soccer 2D and 3D during the
last 5 years.

Regarding our humanoid team, we have been struggling with low cost robots
since 2013, thus making it very hard to attain good results in competitions or
even qualify for RoboCup. Still, we achieved the 3rd place in LARC 2014 in the
KidSize competition. In 2016, we have received a Robotis OP2 robot and enough
material to build other 4 robots.

Backed by the code developed for other leagues, especially for RoboCup 3D
Soccer Simulation, we have been quickly evolving since the arrival of our Robotis
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OP2 robot. Moreover, we have benefit from the 2012 UT Austin Villa code release
for the Standard Platform League (SPL).

This paper presents our recent efforts in developing a humanoid robot team
to compete in RoboCup Humanoid KidSize. The rest of the paper is organized as
follows: Sec. 2 introduces the robot hardware. Sec. 3 presents our software archi-
tecture and tools. Sec. 4 explains our computer vision techniques. Sec. 5 shows
our state estimation approach. Sec. 6 discuss our motion control algorithms.
Finally, Sec. 7 concludes and shares our expectations for the future.

2 Hardware

In 2016, we have acquired sufficient material to build 4 humanoids robots, in-
cluding 80 MX-28AT servomotors. Thus, we are designing a new humanoid robot
based on the DARwIn-OP. We named our robot project Chape as a tribute to
the Chapecoense team, a Brazilian soccer team that lost most of its members
in a flight accident. The electronics and mechanics are being developed in or-
der to generate a modular architecture that allows hardware upgrades. Another
important requirement is to facilitate the maintenance tasks, avoiding a large
disassembly of the robot when maintenance is needed.
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Fig. 1. Hardware of the Chape robot: a) circuit diagram; b) CAD model of the chest.

As shown in Fig. 1(a), the electronics is composed by a High Performance
Processing Unit (HPPU), a Low Performance Unit (LPPU), a Power Manage-
ment and Health Monitoring board (PMHM), a Camera, a Battery and Servos.
The HPPU is implemented with a NUC D54250WYK and will concentrate the
high demanding computation tasks. The LPPU, implemented with an Arbotix
Pro, is responsible for interfacing the HPPU with the servos and the IMU. More-
over, it logs the built-in tests and power status generated by the PMHM board.

The PMHM is entirely developed by the ITAndroids team. This board has the
following functions: a) manage the power supply, including automatic switching
between the battery and an external power supply; b) treat abnormal events such
as sudden overcurrents and short circuits; c) autonomously start self protection
routines in case of internal overheating; d) amplify the audio signals sent to the
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speakers; e) perform hardware built-in tests; f) control the indicative LEDS in
order to communicate status and alarms.

Regarding Mechanics, we will adapt the DARwIn-OP’s head and chest in
order to accommodate our own electronics, while keeping the legs unchanged
and making small modifications to the arms to make them longer. Fig. 1(b)
shows a CAD model of our new chest. We are building 4 humanoid robots,
besides the Robotis OP2 robot that we already have, to compose a full KidSize
team.

3 Software Architecture and Tools

We use a module-based layered approach for code architecture, which has proven
to have several advantages in our experience. It encourages better code organi-
zation, allows for a high degree of code reuse and flexibility, and permits sharing
most of the code between the real robot and a simulated one.

We use the same overall code structure that was developed for our ITAndroids
Soccer 3D code. This structure is divided into 6 main layers:

– Communication: communicates with the robot hardware (actuators, cam-
era, subcontroller etc.) or with a simulator.

– Perception: transforms data received from the Communication layer into
high level data structures used by the higher layers.

– Modeling: models the world and agent states. This layer contains the algo-
rithms for computer vision and robot localization.

– Decision Making: implements the high level strategy used for robot soccer.
This layer is organized as a tree-based structure of behaviors

– Control: computes actuators commands needed to execute the requests from
Decision Making. For instance, a walk request is converted into joints posi-
tions through a control algorithm.

– Action: translates the commands generated in the Control layer into an
appropriate format to be sent to the actuators by the Communication layer.

The agent is implemented in C++. The main third-party libraries used are
OpenCV (Computer Vision) [3], Eigen (Linear Algebra) [5], and Boost (general
purpose) [1]. Despite our core agent code does not use it, we heavily rely on the
Robot Operating System (ROS) framework [12] and its related tools for testing
and debugging purposes.

A simulation model for the DARwIn-OP robot has already been developed
for Gazebo [4]. However, this model has many mechanical details, making it
unnecessarily heavy and unsuitable for multiple robots simulation. Therefore,
we have used this simulation model mainly for prototyping motion algorithms.
We also use ROS to communicate with Gazebo.

In our agent, we have two threads running simultaneously. The cognition
thread runs at the sample rate of the camera image capture (30 Hz) and is
responsible for world modeling and decision making. The motion thread runs at
a much higher rate (currently, 125 Hz) and deals with motion control.
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4 Computer Vision

Our vision system uses a base code for the Standard Platform League made
publicly available by the Austin Villa team in 2012 [2]. The main differences
between the released code and ours are related to the detection of the white
ball, the white goalposts and general bug fixes.

The first step in the vision pipeline is the color segmentation, which is respon-
sible for classifying each image pixel as white, green, blue etc., based on a color
table. To generate the color table, we manually classify pixels in an image and
then train a Neural Network classifier, using the MATLAB Pattern Recognition
App from the Neural Network Toolbox [14].

The next step involves analyzing the segmented image in order to detect
objects. First, an horizon line is generated based on the 3D camera position
and its intrisic parameters. This line is used to filter “floating” objects, which
are above the horizon line. Then, blobs are formed, which are collections of
contiguous pixels of the same color. The white blobs are used to generate lines,
which are classified into goalposts, curves or straight lines. The penalty cross
is detected by analyzing white blobs surrounded by mostly green pixels. The
detections is illustrated in Fig. 2.

Fig. 2. Illustration of the detection of objects in images extracted using the robot.

For the white ball detection, our team used the following approach, illustrated
in Fig. 3: initially, color classification is performed to identify white pixels. How-
ever, the classified image does not present a single solid circle, as desired: the
main one is filled with holes, due to the ball texture. Also, there are many white
pixels outside the main ball cluttering the image, since there are white pixels
in the grass. In order to overcome these issues, mathematical morphology op-
erations were used, namely closing (to mitigate the white pixels in the grass)
followed by opening, which leads to a solid circle without holes inside it.

Then, after the morphological operation, Hough Circle Transform is used on
the gradient of the image. Our team used the houghCircles function implemented
in OpenCV [3], which does both the Hough Transform and the gradient image
computation. However, many false ball detections were present, since there may
be other white objects in the robot’s field of view. Thus, to eliminate them,
filtering is performed. Thresholds were set to establish minimum and maximum
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Fig. 3. Ball Detection Pipeline. First, white pixels of the image are classified. Then,
morphology operations are applied to eliminate holes inside the ball and spare pixels
outside it. Finally, Hough Circle Transform is applied.

radius, and a minimum density of white pixels within the detected circle. Besides
that, if a ball is detected beyond the horizon line, it is discarded.

However, in order to eliminate the vast majority of false positives, our ap-
proach sometimes produces false negatives. This issue was overcome with a track-
ing algorithm, as described in Subsec. 5.1.

The computer vision algorithms localize the objects in the 2D matrix of
pixels. However, for localization and tracking purposes, the 3D positions of the
objects are needed. Given the 2D point in the image, its x and y 3D coordinates
can be estimated if we constraint that z = 0, i.e. the object is on the ground.
To compute the camera pose in the robot’s frame, we use Forward Kinematics.
This coordinate transform process is described with more details in [7].

5 State Estimation

5.1 Ball Tracking

Since computer vision is not fully reliable, a Kalman Filter based algorithm was
used to track the ball and reduce the estimation error. In particular, when a false
negative happens, we still need to keep tracking of the ball. In our approach,
the state is composed by the ball’s positions and linear velocities in the robot’s
frame, xrk=[xrk y

r
k v

r
x,k v

r
y,k]

T . Moreover, the observation model is composed by
its 2D position zrk = [xrk y

r
k]T , as estimated by the computer vision algorithm.

The motion model follows in Eq. (1), as can be seen, linear accelerations are
modeled as the Gaussian noises wa,x and wa,y. Note that, since the tracking is
done on the robot’s frame, the robot odometry ∆drk=[∆xrk ∆y

r
k ∆ψ

r
k]
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5.2 Localization

In order to solve the global localization problem, we use an extended Monte Carlo
Localization technique, described in [13] and [11]. In this MCL adaptation, it is
possible to solve the kidnapping problem using sensor reset, which occurs based
on the likelihood of the observation in a given moment.

In this localization problem, the discrete process state xk is composed by the
robot’s 2D position and orientation in the field, xk=[xk yk ψk]T . Moreover, the
robot displacement is given (in the robot’s frame) by ∆drk=[∆xrk ∆y

r
k ∆ψ

r
k]
T ,

where the odometric information is given by the walking engine.
Composing the observation model, we have distances to observed field fea-

tures, such as “L’s”, “T’s”, goal posts, crosses and the field center. Besides, it
includes the observation of each line’s intersection points with the limits of the
robot’s vision. Calling all that seen points landmarks, we compute the observa-
tion probability as described in Eq. (2).

p(Zk|x[m]
k ) =

∏
j

exp

[
− (dj − d̂j

[m]
)2

2σ2
d

]
exp

[
− (ψj − ψ̂j

[m]
)2

2σ2
ψ

]
(2)

In this model, dj and ψj are respectively the measured horizontal distance

and horizontal angle between the robot and the j-th landmark, and d̂j
[m]

and

ψ̂j
[m]

are respectively the expected horizontal distance and horizontal angle be-
tween the j-th landmark and the robot in the m-th particle position.

To face the landmark ambiguity problem, we adopt an approach based on
the maximum observation likelihood, the same strategy we use for field lines
observation in Soccer 3D. This approach is described with more details in [11].

6 Motion Control

For walking, we use the ZMP-based omnidirectional walking engine described
in [8]. In general terms, it follows the flux presented in Fig. 4. The input to the
algorithm is the desired velocity v = [vx, vy, vψ]T with respect to the robot’s
local coordinate system. At the beginning of a new step, poses for the torso and
the swing foot are selected for achieving the expected displacement at the end
of the step. So, a trajectory for the center of mass (CoM) to follow a reference
Zero Moment Point (ZMP) trajectory is computed. The trajectory of the swing
foot is obtained by interpolating between the initial and final poses of this foot.
Finally, joints angles are calculated through Inverse Kinematics (IK) considering
the poses of the support and swing feet. Note that the module “Next Torso and
Swing Poses Selector” is called once for step, while the others are executed at
the update rate of the joints.

Our step planner selects torso and feet poses to make the robot follows an
omnidirectional model while respecting self-collision and leg reachability con-
straints. To reason about the robot dynamics, we approximate it using the 3D
Linear Inverted Pendulum Model (3D-LIPM) [6]:
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Fig. 4. Walking Engine overview.

xZMP = xCoM − zCoM
g

ẍCoM (3)

where xZMP = [xZMP , yZMP ]T is the ZMP position, xCoM = [xCoM , yCoM ]T is
the CoM position, zCoM is the CoM height, and g is the acceleration of gravity.
The ZMP is kept at the center of the support foot during single support and
moves from the current support foot to the next one during double support. We
also use the torso’s angular velocities measured by the gyrometer to stabilize the
walk. This feedback strategy has proven quite effective, especially when walking
on artificial grass.

For kicking, we first considered that it is a movement where the biped starts
in a stand position, kicks the ball and returns to the same stand position. Given
this description, we divided the motion into 4 phases: a) the ZMP is moved to
the center of the support foot; b) the robot kicks the ball; c) the kicking foot
is placed back on the ground; d) the ZMP goes back to the center of the torso.
To balance the biped during kicking, we employ the same ZMP-based algorithm
used for walking. For the getting up movements, we are using the original Robotis
OP2 keyframes with slight modifications to make them work on artificial grass.
For more information about our keyframe movements framework, please refer to
[10].

7 Conclusions and Future Work

This paper presented the recent efforts of ITAndroids group in RoboCup Hu-
manoid KidSize. This year, we have started a new humanoid robot design based
on the DARwIn-OP. We intend to build 4 new robots based on this design to
participate with a full robot team in the competition. Besides, we want to share
this project with the community when it is ready, since many teams complain
about the difficulty of exactly reproducing the DARwIn-OP robot, given that
some of its electronic components are hard to obtain.

We have also developed our own base code, inspired by our Soccer 3D team
code. Most of the software components are done and we are now finalizing the
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system integration. Nevertheless, our software still lacks the robustness and per-
formance needed for being strongly competitive in the current level of the com-
petition. Thus, our development efforts will be focused on improving the code
behavior in the real robots. We also expect to implement our new walking algo-
rithm [9].
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