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Abstract. This Team Description Paper describes the humanoid robot
team Berlin United � FUmanoids and presents robots for participation
in RoboCup 2017 in Nagoya, Japan. A general overview of the team and
its history will be given as well as insight into research interests and
particular areas of the robots' software and hardware.

1 Introduction

Berlin United � FUmanoids is a humanoid robot team participating in the Hu-
manoid KidSize League at RoboCup. The team was founded in 2006 as the
successor of the Mid- and SmallSize team FU-Fighters.

During the time of participation at RoboCup, the team had signi�cant suc-
cesses in competitions, achieving 2nd place in 2009 and 2010, 3rd place in 2007,
4th place in 2011 and reaching the quarter �nals in 2008, 2012, 2013 and 2015.
2014 and 2015 the team scored 1st place in the RoboCup German Open compe-
titions. At the Iran Open 2014 the FUmanoids scored 1st and 2016 3rd.

This paper presents the team's research interests, contributions to the Robo-
Cup community as well as the hardware and software of the FUmanoid robots.

2 Research and Contribution

The main research interests are:

� decentralized control architecture for humanoid robots
� reliable classi�cation of YUV triples as logical colors, even when lighting
conditions change

� real-time capable vision and detection algorithms for soccer games
� fast and stable walking
� development of sophisticated hardware to perform low level diagnostics of
the overall system

http://www.fumanoids.de


The team is committed to promote RoboCup, the Humanoid League and
the research exchange between teams. For this reason the team is one of few
Humanoid League teams that releases their source code, schematics and designs
for hardware components on a regular basis.1 The software releases [3] consist of
FUmanoid, the main program running on the robot. Each release resembles the
software and hardware used in the previous RoboCup championship. Addition-
ally, the developed framework is also released [5]. The custom built hardware is
part of the release [4] as well as the software running on the microcontrollers.
Theses and papers on the robots are available on our website.2

3 Hardware

We use two di�erent robot architectures. One called the 2013-Platform and the
other called 2016-Platform (see Fig. 1).

Fig. 1: 2013-Platform (left) and 2016-Platform (right)

3.1 Mechanical Structure

2013-Platform. The 2013 robot model was designed and constructed with re-
spect to simplicity and both human-like proportions and capabilities. It features
a parallel kinematic leg design, with an additional servo motor added to allow
the torso to move laterally, imitating the human spine movement that keeps the
torso upright. The total height is 65 cm.

For actuation, we use Dynamixel servo motors from Robotis Inc., namely
RX-28 and RX-64 servos. They provide 20 degrees of freedom (DOF)��ve per

1 http://www.fumanoids.de/opensource
2 http://www.fumanoids.de/publications
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leg, two for upper-body movement, three per arm and two in the head. To remove
jitter caused by worn-out potentiometers, we modi�ed the servos to use a hall
sensor (magnetic encoder) for reliable measurements of the current joint angle.

2016-Platform. Since the robots play on arti�cial grass, the FUmanoids de-
signed a second robot platform based on theMinibot/Hulk platform of the Ham-
burg Bit-Bots [1]. The new platform does not have any parallel kinematics. In-
stead it utilizes the more common approach for the hips and legs: three DOF
in the hips, one DOF in the knees and two DOF in each foot. For actuation
we use Dynamixel servo motors from Robotis Inc., namely MX-106, MX-64 and
MX-28�six per leg, three per arm and two in the head. For the body parts 2mm
aluminum is used with the advantage of growing from 65 cm to a total height
of 76 cm with only slightly more weight. Additionally,the robot has a lot more
space inside its torso. The 2016 generation will play in a mixed team with the
2013 platform.

3.2 Sensors

We equipped the robot with the following sensors:

Actuators: The feedback of the actuators includes the current joint angle, mo-
tor speed and load.

IMU: The sensor board includes an integrated six-DOF IMU, featuring gyros
and accelerometers. Also an external six-DOF IMU is placed on the head,
which is attached to the motorboard. A Kalman �lter provides �ltered output
that is used by the robot for stabilization as well as calculation of the camera
perspective in order to obtain localization data.

Camera: The robot is equipped with a commercially available webcam (Logi-
tech HD Pro Webcam C910). It delivers 30 frames per second using Motion
JPEG. In 4.3 we introduce our research on an algorithm that leverages the
HD resolution of the camera.

Power Supply: A smart power supply permanently monitors the battery's
voltage, the voltage on the servo motors and on the 5V power domain (each
with mV accuracy) that powers the main computer. Additionally, the power
supply measures the current consumed by the servo domain as well as by
the 5V domain (each with cA accuracy). Each of those measurements are
performed on a 120 kHz basis to guarantee quick responses from the power
supply.

3.3 Main Computing Unit

In order to satisfy the performance requirements, we are using an ODROID-X2
board featuring an Exynos4412 Quad-core ARM Cortex-A9 CPU clocked at
1.7GHz in the 2013-Platform. The 2016-Platform is using an ODROID-XU4
board featuring an Exynos 5422 Octa-core ARM Cortex-A15 and Cortex-A7



CPU. These boards provide all necessary extension interfaces, such as multiple
USB ports (for the camera and the WiFi module) and Ethernet connection.

We utilize Linux as operating system, based on a custom-compiled kernel
and the Linaro distribution.

3.4 Sensor Board

In order to improve communication speed and frequency with actuators and
sensors, we developed our own sensor board. It supports connecting the actuators
of each leg and the upper body separately in order to set and get servo positions
on each bus in parallel. One ARM Cortex M4 processor, clocked at 168MHz,
handles both the Kalman �lter, which is used by the internal and external IMU,
and the e�cient servo communication. Data and actions, e.g. movements of the
robot, that are triggered via a dedicated serial connection, can be requested by
the main unit.

4 Software

4.1 Inverse Kinematics

Robots are actuated with servomotors which are either con�gured with target
angles and velocities or torque. Setting the desired parameters in a �raw� fash-
ion is very cumbersome when dynamic movements shall be performed. Inverse
kinematics creates a di�erent way of describing motions [2]: Instead of manually
calculating the target angles for a given pose we create tasks which represent
some target con�guration. An example: We want the robot's right hand�this is
the task's ende�ector�to move to a speci�c point in the torso's reference coor-
dinate frame�this is the task's base coordinate frame. The inverse kinematics
calculates the angle changes in the motors necessary to accomplish the task.

Our inverse kinematics solver implements the ability to formulate multiple
levels of tasks where higher-level tasks cannot be violated by tasks with lower
priority. This is useful as some tasks are more important than others, e.g. bal-
ancing is more important than having the camera point towards a speci�c point.
Less important tasks are solved within the combined-nullspace of all more impor-
tant tasks. We also have implemented a technique to de�ne the target solution
space of tasks. That means our robots can solve the inverse kinematics problem
for di�erent task subspaces independently, thus greatly reducing overshooting at
near-singular con�gurations.

4.2 Locomotion and Stability Control

The walking system of the FUmanoid team is based on dynamic trajectories that
are designed to realize Zero-Moment Point (ZMP) optimization. These motion
patterns allow the robots to walk in every direction with speeds up to 25 cm/s.
The walker is implemented with usage of the inverse kinematics solver shown in
4.1.



Walking is mostly de�ned from the perspective of the feet and involves the
whole body dynamics. The tasks (in terms of inverse kinematics tasks) involve
the movement of the feet with respect to each other and the movement of the
center of mass (COM) with respect to the supporting foot. The lateral velocity
of the COM is matched to either keep the linear momentum inside the support
polygon or to accelerate towards the target position of the swing foot. As long
as the tasks can be ful�lled this su�ces the criteria of a ZMP based walker.
Due to the utilization of the whole body dynamics even body parts which are
not intuitively associated with the process of walking (e.g. arms) are used to
manipulate the COM and its dynamics.

The walker is designed to be usable on other robot platforms as well since
the static properties (e.g. where is the COM in the idle position; what is the
geometry of the robot) are once calculated with the forward kinematics and
used as parameters for trajectory generation. This leads to a highly reusable
walking process which is highly customizable as well.

4.3 Computer Vision

Color Classi�cation. The color analysis is done on a high dimensional cluster
classi�cation base. Each cluster is built around sample color points which repre-
sent a logical color (green/�eld, white/goal, white/�eld lines, . . . ). Every logical
color is modeled as a Gaussian Mixture Model (GMM), meaning a weighted
sum of Gaussian distributions. This method has been known to describe the
typical shades and variations of the colors quite well. The model also accounts
for the case of multi-colored items like the new ball, since it will just �t separate
Gaussian components to the di�erent colors.

The training of the parameters is done right before the game so the individual
lighting and location conditions are considered. The samples needed for the
training are created by identifying the objects to be classi�ed in the camera
image. To �t the model to the samples we calculate the gaussian parameters over
the samples. We decide with a threshold if a measurement belongs to a certain
gaussian model. This threshold is auto detected. Notably, one YUV value can
represent multiple logical colors at the same time using bit masks. A classi�cation
result can be seen in Fig. 2.



(a) Typical camera out-
put

(b) The classi�cator dif-
ferentiates between the
logical colors

Fig. 2: Raw camera picture and the associated color classi�ed image

Fast Partitioning. We are studying a novel algorithm that partitions even
high-resoluted images very fast. The algorithm �nds interesting regions, so we
do not need to waste calculation time on extraneous regions. As a result CPU-
intense algorithms are deployed only on very few patches of the image.

At �rst we compute the integral image. This is the only time we do a cal-
culation that needs O(n) time, with n being the number of image pixels. Each
subsequent part of the vision pipeline takes fewer asymptotic time. Integral im-
ages have the advantage to allow calculation of the sum of pixel values of any
image region in constant time.

The integral image's pixels contain an integer for each color channel with the
sum of all pixels of the corresponding channel in the rectangle from the top left
to the pixel's coordinates:

pintegral(x, y) =

x∑
i=0

y∑
j=0

poriginal(i, j)

with pintegral(x, y) as the pixel at x, y in the integral image and poriginal(i, j) as
the pixel at i, j in the original yuv image.

Having the integral image, we build a tree of patches. At the beginning the
whole image is one node. Then we check whether there is a signi�cant edge
inside the node. If there is one, we determine whether it is a horizontal or a
vertical edge and �nd its location. Now the node splits at this edge and two new
nodes are created. We recursively apply this algorithm to the remaining nodes.
Fig. 3 illustrates the leaves of the trees created for the �eld contour extraction
respectively for the ball and goal detection.

Field Contour Analysis. The �eld contour divides the image in two parts,
where the part above the �eld contour can be discarded. The lower part contains
the visible areas of the pitch and is used for further image processing steps. To
�nd the �eld contour, we apply the partition algorithm to the U and V channel.
While building the tree we look whether the newly created nodes contain �eld
color. If a node does, we raise the �eld contour, otherwise we lower it.



(a) Tree on UV channel
for �eld contour detection

(b) Tree on Y channel for
ball and goal detection

(c) Original image with
detected �eld contour,
ball and goalposts marked

Fig. 3: Partition trees

Object Extraction. To �nd the ball and the goalposts, the tree building is
applied to the Y channel. We know that we found a ball or goalpost candidate
if a node we created contains the color white.

Goal Extraction. The positions of goalposts in the image are extracted by �nding
white blobs on the �eld and checking whether these blobs touch the �eld contour.
The base point of a goal post is its position on the �eld. We �nd the base point
by moving the bounding box downwards as long as it contains the color white.
Whereas, if it contains the color of the �eld, we look for the sharpest edge in
this box. The base point is the center of the sharpest edge moved half the post
size backwards to match the center of the post.

Ball Extraction. To determine if a white blob actually is a ball or not, our
robots utilize a chain of classi�ers that increase in complexity and accuracy. The
chain starts by testing the candidates' size, continues by testing if the top half
of the ball candidate is brighter than the bottom half and then tests whether
the candidate does not contain to much �eld color. Next, we apply a SVM and
match against a known color distribution with the KL divergence [6].

4.4 Modeling

Object Modeling. In order to track the ball, obstacles and goals, we employ
Kalman �lters [7]. The ball model involves the position and velocity. The goals
are modeled by four independent posts. This approach allows us to distinguish
between the opponent's and our own goal. Obstacles are modeled by a dynamic
number of Kalman �lters. They also keep track of the team colors.

Motion Editor. We utilise the general inverse kinematics solver in the motion
editor (Fig. 4) to de�ne motions. This enables movements to be created easily
and e�ectively. The fundamental idea is to de�ne tasks in a more abstract way
in order to achieve robot independent motions. The goal is to run these tasks on
di�erent robots that not only di�er in link size but also in number and type of



joints. A task is mostly de�ned by two e�ectors and their position and orientation
to each other. The inverse kinematics will compute which actuators are involved.
It is possible to de�ne multiple tasks that can be executed at the same time.
Dependencies between the tasks are resolved by prioritization. Sequential tasks
are solved by using hierarchical state machines, where each state presents a task.

We use a tree structure to represent these state machines. Each tree node
represents a state/task, while the nodes' siblings represent the next state/task.
The child of a node can either be a termination criteria of the state, another task
with a lower priority or a speed pro�le with which the parent node is solved.

Fig. 4: Motion of a robot waving with both hands independently

5 Conclusion

With the outlined improvements to the software of the robots we are looking
forward to participate in the RoboCup 2017 competition.
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