UTRA Team Description Paper
RoboCup 2018 Humanoid League (KidSize)

Jason Wang', Shahryar Rajabzadeh!, Tyler Gamvrelis', Lukas Zhornyak!,
Nam Nguyen!, Newton Xu', Mariko Tatsumi®, Arnav Goel', Walton Wang!,
Justin Yuan'!, Steven Liu', Yuchen Wu', Gokul Dharan', Izaak Niksan!,
Jenny Yang!, Xu Xiaoxue!, Omer Faruque'!, Samee Mahbub!, Jeffrey Qiu!,
Gallop Fan', Ganeshan Sivakumaran', Kyle Kim', Daniel Campoverde!,
Robin lin', and Steven Lee!

University of Toronto, Toronto ON M5S1A1, Canada,
soccer@utra.ca,
WWW home page: http://www.utra.ca/teams/soccer/

Abstract. This document presents the robot (”"Béz”) that University of
Toronto Robotics Association (UTRA) has submitted for consideration
in the RoboCup 2018 Humanoid League (KidSize class). The mechanical,
control, electrical/embedded, and software subsystems are described in
detail as well as the team’s research interests.

Keywords: RoboCup 2018, bipedal robot, mechatronics, mobile robotics,
embedded systems, inverse kinematics, RT'OS, ROS, computer vision, lo-
calization, image processing, path planning

1 Introduction

The University of Toronto Robotics Association (UTRA) team consists of un-
dergraduate students from the Electrical, Computer, Robotics and Mechanical
Engineering departments at the University of Toronto, Canada. The team was
formed in the summer of 2017 with the goal of being the first team to participate
in RoboCup that is composed solely of undergraduate students. The team mem-
bers are engineering students in years 1 through 3 who are distributed among
four subsystems: mechanical, control, electrical/embedded and software. UTRA
was able to design, prototype, and construct a walking humanoid robot in 8
months. The team plans to improve on the current design in its future iterations
by designing 3D printed parts and making custom servo motors.

2 System Overview

There are two control units on the robot. One is a Jetson TX2 module from
NVIDIA that handles the high-level and computationally-intensive algorithms
such as computer vision, localization, and artificial intelligence (AI). The other
control unit is a STMicroelectronics ARM-based 32-bit microcontroller, which

II

handles the real-time control algorithms for controlling the actuators and acquir-
ing motional data. A communication link between the two units uses publisher-
subscriber messaging to transmit high-level commands (such as moving to cer-
tain coordinates on the field) and relay state information. This approach of using
two controllers in an asynchronous manner disentangles the control systems from
AT and computer vision, thereby reducing the probability of computational bot-
tlenecks and improving reliability.

3 Mechanical Subsystem

UTRASs robot is inspired by the Darwin-OP open source humanoid research
robot [I]. It stands 45 cm tall and weighs 2.4 kg. The robot is actuated by 16
Dynamixel AX-12A servos. There are six motors in each leg and two motors in
each arm. All the electronics are embedded inside the box-shaped body. A camera
is fixed to the top of the body and does not rotate. The robot was constructed
out of aluminum sheets, which were cut and bent by hand according to CAD
designs. The arms are an exception as they are 3D printed. The robot is depicted

in Fig. [1

Fig. 1. Photograph of the robot.

111

4 Control Subsystem

4.1 Poses

The state of the body is defined by a pose, which consists of the following prop-
erties with respect to an absolute coordinate system (e.g. the playing field): the
x-, y-, z-coordinates, the angle, and the speed of the robot. The x- and y- co-
ordinates refer to the position on the field while the z-coordinate refers to the
lower hip of the robot. The angle references the direction the robot is facing with
respect to the reference x-axis.

4.2 Body Trajectories

Given two poses — an initial and desired pose of the body — a body trajectory is
generated by a 3'¢ order Bézier curve. This is the path that the body will take.
Many trajectories in this design utilize Bézier curves since their coefficients can
be judiciously chosen to control the values and derivatives at the end points.

4.3 Footstep Planning

The positions of the footsteps on the x-y plane which allow the robot to follow
the given body trajectory are iteratively generated. Each footstep is given a
constant airtime and the speed of the robot is controlled by varying the step
length. Deviations by the footstep from the body trajectory are determined
through the curvature of the path.

4.4 Foot Trajectories

After obtaining the footsteps, the foot trajectories are then calculated. First, the
relative position of the next footstep from the previous one is found at the time
of touchdown by subtracting the absolute coordinates of the body and the foot.
To find the joint parameters that satisfy the current foot coordinate, inverse
kinematics is employed. This generates a family of solutions, from which the so-
lution which admits the smallest Euclidean distance from the previous iteration
is chosen. After finding the relative position of the current footstep at take-off,
a 4" order Bézier curve (4" order since there are 4 boundary conditions, the
positions and the velocities at the end points as well as the height at the half
point) is fit between these points. This is for the swing phase.

Similarly for the stance phase, the absolute coordinate for the same foot is used.
A 4" order Bézier curve is fit between the corresponding points.

4.5 Body Sway

To deal with the body sway of the robot when walking, an exponential smoothing
filter is used. This way, when the body attempts to center itself under the foot,
the trajectory is less abrupt and the transition is smoother.

v

Poses

Body Trajectory

Footsteps
| Foot Trajectories

Body Sway

Inverse
Kinematics

Fig. 2. Control diagram.

4.6 Specific Actions

The specific actions performed by the robot are mainly kicking and getting up
from a prone or supine position. These actions are performed by discretizing the
action into finitely many joint angles states separated by a specified duration of
time. These states are then interpolated by fitting 3*% order Bézier curves (3™
order since there are four boundary conditions: the positions and the velocities
at the endpoints) between the states. To simplify calculations it was also noted
that every state in the continuous trajectory was statically stable, so transition
between the states was stable even at low speeds.

5 Electrical/Embedded Subsystem

5.1 Jetson TX2 Embedded Computer

The Single Board Computer (SBC) hosts an NVIDIA System on a Chip that
runs Ubuntu 16.04 on its quad-core ARM Cortex-A57 and is also capable of high
performance parallelized computing through the 256 Pascal GPU cores. The TX2
module is used with the Orbitty Carrier board from Connect Tech Inc. to make
its I/O accessible. The TX2 is responsible for running the high-level control and
strategy software as well as computer vision algorithms; thus, the carrier board is
connected to a Logitech C920 HD camera for image acquisition. The TX2 module
also dedicates a USB port for communication with a ST microcontroller, which
handles the real-time control of the peripherals on the robot.

5.2 Microcontroller

An STM32H743ZITx microcontroller (hereon STM32) on a Nucleo-H743Z1 de-
velopment board is used to execute the low-level software that handles communi-
cation with the inertial measurement unit (IMU) and servo motors in real-time.
All the software, depicted in a simplified manner in Fig. |3] was written from
scratch with the exception of FreeRTOS and the hardware abstraction layer
provided by STMicroelectronics. All microcontroller code developed (including
original drivers and APIs for Dynamixel AX-12A servo motors and the MPU6050
IMU) is available on GitHub for the RoboCup community to benefit from.

| |
| |

Fig. 3. Software organization. The microcontroller executes 3 processes on top of
FreeRTOS.

The STM32 is pre-loaded with sets of joint angle trajectories generated by the
controls team for specific scenarios. The high-level software on the Jetson spec-
ifies which trajectories the STM32 should be distributing to the motors at any
given time based on strategy as well as IMU data. The IMU data is also used to
perform real-time PID control on the STM32. The use of FreeRTOS paves the
way for flexibility in control algorithms and utilization of more complex com-
munication links with higher bandwidth and lower latency such as Ethernet, for
which there is a module on the Nucleo-H743ZI.

5.3 Sensors, Actuators, and Communication

Motors: As depicted in Fig. 4] 16 Dynamixel AX-12A servo motors are con-
trolled from this subsystem using 5 UARTs at 1 Mbps to increase parallelism.
These motors are position-controlled due to limitations with the AX-12A mo-
tors. The motors on the legs are daisy-chained in sets of 3, and the remaining 4
motors for the arms are all on one chain.

IMU: A MPU6050 IMU is used to acquire and report information about the
state of the robot’s dynamics via 100 kHz I2C.

Communication: The STM32 uses a virtual serial port at 115 kbps to publish

VI

state information to a ROS node on the high-level software on the Jetson, and
receive new goals.

Controls/Al determine action to
take and update the goals on the
microcontroller

100kHz D

1 Mbps serial j
u e

Microcontrollersends state
to PC for feedback

TX2

Fig. 4. Interfaces with NVIDIA Jetson TX2 and peripherals.

6 Software Subsystem

6.1 Robot Operating System (ROS)

The software architecture is based on ROS . Our architecture is
largely based off the Humanoid League Messages by Hamburg bit-bots, however
we have several design changes.

Instead of creating multiple ROI regions for different regions of interest (balls,
field lines, etc.), we have a node called field_ROI that first detects the grass and
filters out all the objects that are not of interest. Then, geometry is used to
locate the points on the field in 3D.

6.2 Computer Vision

Information is obtained from the images acquired by the camera through a series
of filtering stages in the computer vision system. The filters are as follows:

— Field Detection - A color filter supported by color space estimator (which
obtains the color of the grass) to get the area of the field.

— Field Line Detection - From the field area message we detect straight
lines and find the individual intersections of all those field lines using Hough
Lines.

https://github.com/utra-robosoccer/soccerbot
http://wiki.ros.org/humanoid_league_msgs

VII

/goal_position_transformation

fimage_acquisition

Jcamera_input/image_raw Ipixel_to_position_t

/camera_input/image_raw

Ivisual_odom

fimage_processing

/camera_input/image_raw

Jcamera_input/image_hsv

J/camera_input/image_hsv

/camera_input/image_hsv

[lestimate_colorspace

=

Jcamera_input/image_hsv

Fig. 5. ROS graph of computer vision inputs.

4 to_position,

fine_position_transformation
fine_points transformation

Jobject recognition/lines_in_image

fobject_recognition/iine_points _in_image

Jobject recognition/iines_in_image

Iobject_recognition/field_area Jobject_recognition/iine_points _in_image

Iobject candidates oall_candidate_chooser Jobject, In.image, " pall_position.

fMeld_Rol

Lobject 2 hal_detection
Jobject_recognition/eld_area

Jobject In Image Jopponent _positiont

lobstacle_detection

Fig. 6. Image processing and localization of objects in space.

VIII

— Pole Detection - The pole is detected using the Hough Line Transform. A
high threshold value is set to ignore the vertical net lines and hence to only
detect the vertical pole lines.

— Ball Detection - A cascade classifier trained with Matlab locates the ball
and sends its coordinates.

6.3 Path Planning

After testing a number of methodologies such as Dubin’s path, we stuck with a
much simpler algorithm for path planning that fit better with our mechanical and
control subsystems. This algorithm calculates only vertical paths and rotations
and puts the operations into a queue.

7 Current Research

Currently, humanoid robots are very expensive. A Darwin-OP which serves as a
benchmark for humanoid robotics costs $12,000 USD [I]. This poses a big entry
barrier for people interested in the field. UTRA team is researching several ways
that can reduce the price of building a humanoid robot to make them more
accessible to communities such as students and hobbyists. The team is working
on two areas in this regard:

1. Exploring 3D printing technology which can reduce labour effort, material
costs and improve the overall design

2. Creating a custom servo motor which will offer torque comparable to Dy-
namixel MX-64 motors but at a much lower cost.

This servo is planned to be made using off the shelf components such as a DC
motor, an encoder and a gearbox. The servo will have a dedicated microcontroller
for controlling the state of the motor. Such a servo motor has an estimated cost
of no more than $100 USD. All of the work will be open source for the benefit
of RoboCup participants and the robotics community in general.

References

1. Trossden Robotics, Darwin-OP Humanoid Research Robot - Deluxe Edition. Avail-
able online at http://www.trossenrobotics.com/p/darwin-OP-Deluxe-humanoid-
robot.aspx

	UTRA Team Description Paper RoboCup 2018 Humanoid League (KidSize)

