
The NUbots Software Overview for RoboCup
2024

Joe Bailey, Clayton Carlon, Stephan Chalup, Liam Craft, Joel Ferguson,
Angelique Herfel, Dexter Konijn, Sam McFarlane, Alexandre Mendes, Johanne
Montano, Thomas O’Brien, Corah Oliver, Jesse Perrin, Mikyla Peters, Ysobel

Sims, Cottrell Tamessar, and Jesse Williamson

Newcastle Robotics Laboratory
College of Engineering, Science and Environment

The University of Newcastle, Callaghan 2308, Australia
Contact: nubots@newcastle.edu.au

Homepage: http://robots.newcastle.edu.au

1 Walking

NUbots currently use an open-loop walk engine which creates polynomial splines
representing three-dimensional trajectories of the feet and torso pose between
steps. The trajectories are generated in the planted foot frame as a function
of the desired walk command (vx, vy, vyaw). The engine interpolates over these
splines to find the next target position for the feet, which is then converted into
servo joint angles using inverse kinematics. NUbots use a combination of an
approximate analytical and optimisation based solution for the inverse kinemat-
ics of the NUgus. The approximate analytical solution is used to warm-start a
levenberg marquardt style algorithm from the tinyrobotics [9] library.

This walk engine is inspired by Bit-Bots’ Quintic Walk [4], based off Rhoban’s
Quintic Walk [12] and Rhoban’s IK Walk [12].

2 Vision

The Visual Mesh [6] underpins the vision system, and is used for sparse detection
of balls, points on the field, field lines, goal posts and other robots.

The visual mesh is a convolutional neural network for object detection based
on a mesh which samples pixels from an image. The mesh is depth independent
and the number of mesh points is small enough to allow a CNN to run in real-
time on a humanoid robot. Tests on the CPU from the Intel® NUC7i7BNH show
that a nine layer visual mesh had an execution time of 2.44ms [6]. Furthermore,
the visual mesh does not degrade in accuracy when objects occur at different
distances, due to the depth independence introduced by using the mesh. The
visual mesh was used to detect a soccer ball on a field up to 10m away from the
camera [6]. It can detect soccer balls, robots, field lines and goal posts, however
it is built assuming the object to be detected is spherical.



2

The visual mesh is created using the following geometric assumptions for
each image:

1. The camera lens type, height and orientation with respect to the ground are
known.

2. The object is spherical with known radius and remains on the ground.

The height, orientation and radius are used to create a set of unit vectors
based at the camera position. Any vector with origin at the camera can be
thought of as a ray of light travelling towards the camera. If the vector is within
the field of view of the camera it will be collected by the lens. The vector is
mapped to a point on the image using the lens projection equation, provided the
point is within the bounds of the image sensor of the camera. The visual mesh is
formed by taking an array of vectors and associating each of them with a point
and pixel in the image. The array of vectors is specially constructed using two
equations to efficiently sample the space around the camera for the object. This
means the points (sample points) on the image will efficiently sample the image
for the object. Because the vectors are generated in the space around the camera,
the sample is consistent despite changes in lens type, image resolution, and the
apparent size of an object due to distance. Each sample point is connected to its
six closest neighbours and these connections become the edges of the mesh. A
fully convolutional neural network [13] is used on the mesh where each sample
point and it’s neighbours become the input to a convolution. All layers in the
network use seven points convolutions since there are six neighbours for each
sample point. A parameter controls the number of sample points on the object
which determines the level of detail available to the network.

The height and orientation of the camera is tracked using the kinematics and
inertial measurement unit of the robot. The radius of the soccer ball is given.
The unit vectors only need to be calculated once for each height and radius pair.
As the robot walks its height varies. A series of visual meshes for different heights
are calculated on startup. For each image this information is recorded and the
appropriate visual mesh is chosen. A binary search pattern is used to select the
vectors that will become points on the image based on the camera’s orientation.
The partitions of the binary search pattern are built on startup and the search
is run in real-time. Every training and run-time image is converted into the
mesh before the network is run. The network labels each point of the mesh with
the probability it belongs to an object class. A post-processing algorithm based
on the probabilities of the mesh can cluster the sample points to determine an
object’s position.

From the visual mesh a series of specialised detectors are employed to detect
field edges, balls, and goal posts. All calculations in all detectors are done in
three-dimensional world coordinates. Firstly, all points that the Visual Mesh has
identified as either field points or field line points are clustered into connected
regions and, each cluster is then either merged or discarded using some heuristics
until a single cluster remains. Finally, a convex hull algorithm is applied to the
final cluster determining the edge of the field.



3

The ball detector forms clusters out of all the points that the Visual Mesh has
identified as ball points. Specifically, the clusters are formed from Visual Mesh
points that are identified as being a ball point, but have at least 1 neighbour
which is not a ball point. This allows us to form clusters of ball edge points.
Any clusters which are not below the field edge are discarded. A circular cone
is then fitted to each cluster. The cone axis is determined from the line segment
between the centre on the camera and the average of all ball edge points. The
radius of the cone is determined by the maximum distance between the ball edge
points and the average of all of the ball edge points. Different heuristics, such
as degree of circle fit and different distance metrics, are then used to discard to
cones.

The goal post detector follows a similar structure to the ball detector. Clus-
ters are formed from goal post edge points and any clusters that do not intersect
the field edge are discarded. The bottom centre point of the goal post is then
found by averaging the edge points. The distance to the goal posts are deter-
mined and if there are multiple goal posts detected an attempt is made to assign
leftness and rightness to each post.

The field line points from the visual mesh are collected and fed into the
localisation system, which will determine how those points are used.

While the vision system does have the capability to classify robot pixels, a
future goal is to use this information to know the location of individual robots.
This information could then be used in the behaviour system for obstacle avoid-
ance.

The Visual Mesh performs well given it has adequate data. Its use of constant
sampling density makes it ideal for seeing objects far away, such as balls. The
Mesh runs very quickly, and can reach over 100fps.

3 Localisation

Localisation is achieved through a combination of our Odometry system and a
Particle filter.

3.1 Odometry

Odometry estimates the pose over time from an initial starting position using a
Mahony Filter [7] for roll and pitch and an anchor point method (dead-reckoning
of kinematics) for translation and yaw, see blog [5] for a detailed overview of this
approach.

3.2 Particle Filter

Initialisation
At initialisation, n particles are sampled from a multivariate normal distributions
on either side of the field facing towards the centre, to produce initial hypothesis’
of the robots starting position. Additionally, a discretized field line distance map



4

is pre-computed at startup which encodes the minimum distance to an occupied
cell (field line).
Measurement update
The measurement update involves weighting each particle. The general idea is
to weight particles higher if more field line point observations are closer to field
lines. For each particle, the field line point observations are projected onto the
field plane (using Odometry) and mapped into an index in the field line distance
map. The weight of the particle is then calculated using simple inverse function

Wn = 1/(δ + ϵ)

where Wn is the weight of the nth particle, δ =
∑k

i=1(δi)
2 is the total sum of

squared distance values obtained from the map for all field line point observa-
tions, and ϵ is machine epsilon to prevent numerical issues.
Time update
The time update does not directly involve propagating particles forward in time
using a motion model since the latest Odometry information is used within the
measurement update. Instead, the time update involves simply adding noise to
the particles to simulate the uncertainty in the robot’s motion.
Resampling
Resampling refines the set of particles in Particle Filter localisation based on
their calculated weights as follows

1. Normalize Weights: Particle weights are adjusted so their sum is 1, ensuring
each represents its proportional likelihood.

2. Particle Selection: Using the normalized weights, particles are probabilis-
tically chosen. The original set of particles is replaced with the newly resampled
set, now skewed towards more likely positions and orientations of the robot.

4 Behaviour

The behaviour system involves both the Director framework and the logic used
with the Director.

4.1 The Director

The behaviour system is driven by the Director [14], a framework and algorithm
for a reactive tree-style system that emphasises modularity and transitions.

The Director uses the concepts of tasks and providers. Tasks are requests
for an action to happen, such as ‘walk to ball’, ‘walk’, ‘left hip yaw servo’, each
defined as a Protobuf message. Each task may contain some information, i.e.
the ‘walk’ task may have velocity information, and ‘left hip yaw servo’ task may
have joint angle, gain and torque.

Providers provide the functionality for a particular task by either achieving
the task directly or emitting subtasks. For example, the walk engine will be a
Provider for the ‘walk’ Task. It will then call subtasks itself to move the arms



5

and legs. A Provider can only provide for one Task at a time. If both the Walk
and Kick are requesting subtasks for the legs, only one will take control of the
legs. Tasks have an associated priority that determines who takes control.

The Director aims to be highly modular, with small Providers that provide
the functionality for specific tasks such as ‘look at ball’ or ‘walk to ball’. There are
Provider groups that provide the functionality for the same task under different
conditions. There may be a group of Providers that all provide for the ‘Striker’
Task, with each only applicable for a particular game state.

Some Providers need the system to be in a particular state to run. For exam-
ple, a ‘Kick’ Provider may require that the robot is in a standing position before
running. The Director algorithm will not consider it a valid solution unless the
robot is standing. Providers can also declare that when they run, the system
will achieve a particular state. If the ‘kick’ has a high enough priority then the
Director will make the Provider run that will result in a standing state so that
the kick can then run.

Both the referenced pre-print on arXiv and our NUbook [11] Director page
give an extended description of the Director.

4.2 Logic Implementation

There are five distinct layers to our system.

• Actuation: Providers that directly control the servos. Includes groups of
servos, sequences of servos, and kinematics calculations.

• Skill: Physical motions that the robot can perform such as kicking, walking
and getting up.

• Planning: Higher-level calculations that take a task and mathematically
compute how to utilise skills to execute that task. Includes path planning,
where the Provider receives a location to walk to and calculates a velocity
for the walk subtask.

• Strategy: Utilises environment information to determine what to do. In-
cludes walking to the ball, finding the ball, aligning with the goals, and
more.

• Purpose: This layer represents the robot’s overall goal. In the context of
soccer, this involves using GameController information to determine what
game position to play in and calling the relevant strategy subtasks to play
in that position.

The Director tree starts with the Soccer Provider that determines what posi-
tion to play in. If it’s penalised, it will stand still. Otherwise it will use configura-
tion information to play as either a striker, defender or goalie. Before RoboCup
2024 we plan to integrate robot-to-robot communication with this system to dy-
namically choose the position. The official RoboCup Protocol is currently used.
At the root level, the fall management system is running at a higher priority
than the Soccer subtree.

All robots will walk to a designated point on the field in the ready state.



6

In the playing state, the Striker Provider will emit Tasks for finding the ball,
walking to the ball, looking at the ball, aligning to the goal, and kicking the ball.
The finding the ball Task will run at the lowest priority, so if the walk to ball
and look at ball are not running as there are no balls, then find the ball will kick
in. Find the ball moves the head in a search pattern and turns on the spot. The
kick planner will not kick the ball unless the ball is in front of the robot and the
robot is facing the goals.

The Defender Provider will emit a task to patrol a search area. If the ball
enters the search area, the robot will approach the ball and kick it away from
the goal.

The Goalie Provider will dive in the appropriate direction when a ball is close
to the robot. Before the 2024 competition this will be improved to also kick the
ball away from the goal.

5 Contributions to RoboCup

The NUbots team participated in the 2021 Humanoid Kid-Size League and fin-
ished as semi-finalists. The NUbots have participated in the Four Legged League
(2002-2007), the Standard Platform League (2008-2011), the Kid-Size Humanoid
League (2012-2017, 2022-2023), and the Teen-Size Humanoid league (2018-2019).
NUbots were the Four Legged League world champions in 2006. The team won
the first Standard Platform League in 2008 as team NUManoid in collaboration
with the National University of Maynooth, Ireland.

The team’s RoboCup robot code [8], hardware [15], and debugging tools [2]
are open source on GitHub.

The NUbots team have developed a Blender plugin to generate semi-synthetic
images with fully-annotated ground truth segmentation maps [1]. The images
contain random ball positions, robot positions and kinematic poses, obstacles,
and viewer orientations. This tool is public on GitHub for anyone in the League
to use.

The NUbots team maintains a comprehensive documentation resource in the
form of a public website [11], providing detailed information about the hardware
and software systems, as well as guides on various aspects of our systems. This
resource aims to be useful to other RoboCup teams, as well as the wider robotics
and AI community.

The team published three papers relating to RoboCup [3, 10, 14].

References

1. M. Amos and A. Biddulph. NUbots PBR pipeline repository. https://github.

com/nubots/NUpbr.
2. B. Annable, T. Houliston, M. Olejniczak, J. Paye, A. Biddulph, and L. Court.

NUsight2 real-time web-based debugging utility code repository. https://github.
com/NUbots/NUbots/tree/main/nusight2.



7

3. Alexander Biddulph, Trent Houliston, Alexandre Mendes, and Stephan Chalup.
Stereo visual mesh for generating sparse semantic maps at high frame rates. In
Biao Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, and Chaojie Li, editors,
Neural Information Processing, pages 161–178, Singapore, 2024. Springer Nature
Singapore.

4. Team BitBots. Bitbot’s quintic walk. https://github.com/bit-bots/bitbots\

_motion/.
5. Stéphane Caron. Floating base estimation. https://scaron.info/robotics/

floating-base-estimation.html.
6. Trent Houliston and Stephan K. Chalup. Visual mesh: Real-time object detection

using constant sample density. CoRR, abs/1807.08405, 2018.
7. Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear complementary

filters on the special orthogonal group. IEEE Transactions on Automatic Control,
53(5):1203–1218, 2008.

8. M. Metcalfe, J. Fountain, A. Sugo, T. Houliston, A. Biddulph, A. Dabson, T. John-
son, J. Johnson, B. Annable, S. Nicklin, S. Fenn, D. Budden, J. Walker, J. Reitveld,
Y. Sims, T. Young, M. Amos, D. Ginn, K. Hamiltons, J. Paye II, C. Murtagh,
Y. de Koeyer, L. Court, L. Craft, P. Carlyle, A. Hall, T. O’Brien, and S. McFar-
lane. NUbots robocup code repository. https://github.com/nubots/NUbots.

9. T. O’Brien. tinyrobotics. https://github.com/Tom0Brien/tinyrobotics.
10. Thomas O’Brien and Ysobel Sims. Exploring gpt-4 for robotic agent strategy

with real-time state feedback and a reactive behaviour framework. In Australasian
Conference on Robotics and Automation (ACRA), Sydney, 2023.

11. J. Paye and Y. Sims. NUbots handbook. https://github.com/NUbots/NUbook.
12. Team Rhoban. Rhoban’s quintic walk. https://github.com/Rhoban/model/.
13. E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):640–651, April 2017.

14. Ysobel Sims and Trent Houliston. The director: A composable behaviour system
with soft transitions. 2023. arXiv preprint arXiv:2309.09248.

15. T. Young and A. Biddulph. NUbots hardware repository. https://github.com/

nubots/NUware.


