
SERVO INTERFACE SEMANTICS,
TAYLOR EXPANSIONS IN INVERSE

KINEMATICS SOLVING
and why you should care

1

THE GOAL

2

THE WHO
01.RFC BERLIN

3

THE WHY

Need for cheap servos
while at it, why not make them nice?

4 . 1

THE WHAT

SERVO INTERFACE SEMANTICS

It's all about how we communicate desired motion.

A servo's interface implies it's functionality

5 . 1

EXAMPLE:

Interface semantics of classic actuators:

Tell me where to go and how fast to go

5 . 2

THE PROBLEM

The servo's goal position is the goal of the current
trajectory

If the trajectory contains a direction change the
semantics are contradicting

6 . 1

WHAT WE WANT:

the robot's finger moves along a line

0:00 / 0:01

6 . 2

WHAT WE HAVE:

the robot's finger doesn't move along a line

0:00 / 0:01

6 . 3

Duh

6 . 4

THE SOLUTION

We can change the interface semantics:

Let a polynomial (of degree N) with respect to time
describe the servos trajectory!

g(t) =∑
i=0

N

pit
i

7 . 1

Neat side effect:

The polynomial integrates super nicely into the servo's
PID controller

this:

becomes this:

u(t) = ∗ e(t)dt + ∗ e(t) + ∗Ki ∫
t

0

Kp Kd

de(t)

dt

u(t) = ∗ e(t)dt + ∗ (−)Ki ∫
t

0

∑
i

Ki

g(t)di

dti
c(t)di

dti

7 . 2

Another neat side effect:

The servo can incorporate transmission delays :td

g(t) = (t+∑
i=0

N

pi td)
i

7 . 3

THE IMPLICATIONS

Now we need to generate polynomials to express
motions

This isn't all too hard since we have inverse kinematics

Whoopwhoop

8 . 1

INVERSE KINEMATICS REVISITED

IN A NUTSHELL

IK calculates how a posture should be changed to
fulfill tasks

9 . 1

TASK:

Describes what and how to move
Expresses motion in task space

target function

value function

error function

Θ(t)

ψ(q)

e(q, t) = Θ(t) − ψ(q)

9 . 2

EXAMPLE:

"Move the finger along a line expressed in the
coordinate frame of the torso"

: the target position of the finger along the
line (in torso coordinates)

: the current position of the finger (in torso
coordinates)

Θ(t)

ψ(q)

9 . 3

DERIVATION (THE IDEA):

Find the change in posture which minimizes the
task's error function

Δq

e(q + Δq, t)

L(Δq)

L(Δq)

= +||e(q + Δq, t)||2C ||Δq||2W

= +||Θ(t) − ψ(q + Δq)||2C ||Δq||2W

9 . 4

DERIVATION (THE ASSUMPTION):

For small changes in the posture we assume
 to be linear around

Δq → 0
ψ q

ψ(q + Δq) = ψ(q) + JΔqlim
Δq→0

J = ψ(q) =
δ

δq

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

ψ(qδ
δq1

)1

ψ(qδ
δq1

)2

⋮

ψ(qδ
δq1

)d

ψ(qδ
δq2

)1

ψ(qδ
δq2

)2

⋮

ψ(qδ
δq2

)d

…

…

⋱

…

ψ(qδ
δqn

)1

ψ(qδ
δqn

)2

⋮

ψ(qδ
δqn

)d

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

9 . 5

DERIVATION (THE ASSUMPTION):

Our loss function now became:

L(Δq)

L(Δq)

= +||Θ(t) − ψ(q) − JΔq||2C ||Δq||2W

= +||e(q, t) − JΔq||2C ||Δq||2W

9 . 6

DERIVATION (THE WORK):
L(Δq) = 0

δ

δΔq

e(q, t)J T CT

Δq

Δq

= [||e(q, t) − JΔq| + ||Δq|]
δ

δΔq
|2
C |2

W

= [(e(q, t) − JΔq C(e(q, t) − JΔ) + WΔq]
δ

δΔq
)T Δq

T

= [(e(q, t −)C(e(q, t) − JΔq) + WΔq]
δ

δΔq
)T ΔqT J T ΔqT

= [e(q, t Ce(q, t) − e(q, t CJΔq − Ce(q, t) + CJΔq + WΔq]
δ

δΔq
)T)T ΔqT J T ΔqT J T ΔqT

= [e(q, t Ce(q, t) − 2e(q, t CJΔq + CJΔq + WΔq]
δ

δΔq
)T)T Δq

T
J

T Δq
T

= 2 JΔq − 2 e(q, t) + 2 ΔqJ T CT J T CT W T

= JΔq − e(q, t) + ΔqJ T CT J T CT W T

= (J +)Δq − e(q, t)J T CT W T J T CT

= (J +)ΔqJ T CT W T

= (J + e(q, t)J T CT W T)−1J T CT

= (J + e(q, t)W T −1

J T W T −1

J T CT −1

)−1

9 . 7

DERIVATION (THE RESULT):

The that minimizes can be calculated like so:

Shorthand (with and):

Δq L

Δq = (J + e(q, t)W T −1

J T W T −1

J T C T −1

)−1

W = I C → ∞

Δq = e(q, t)J †

9 . 8

TAYLOR EXPANSIONS:

some function
10 . 1

some function with a constant approximation
10 . 2

some function with a linear approximation
10 . 3

some function with a square approximation
10 . 4

PUTTING IT ALL TOGETHER

THIS IS WHAT WE WANT:

g(t) =∑
i=0

N

pit
i

11 . 1

BROOK TAYLOR TO THE RESCUE:

g(t)

pi

= ∑
i=0

N

pit
i

=
1

i!

Δqdi

dti

11 . 2

BROOK TAYLOR TO THE RESCUE:

pi

pi

pi

pi

=
1

i!

Δqdi

dti

= (e(q, t))
1

i!

di

dti
J †

= ((Θ(t) − ψ(q)))
1

i!

di

dti
J †

= (Θ(t) − ψ(q))
1

i!
J † di

dti
di

dti

11 . 3

THE MOST IMPORTANT EQUATIONS IN THIS
PRESENTATION:

g(t)

pi

= ∑
i=0

N

pit
i

= (Θ(t) − ψ(q))
1

i!
J † di

dti
di

dti

11 . 4

WHAT DOES THAT MEAN?

the i-th derivative of the task trajectory

the i-th derivative of the "current value
function".
I.e., how the system continues to move.

Θ(t)d i

dti

ψ(q)d i

dti

11 . 5

WHAT THE ?

From the second derivative and onward of
tend to be nontrivial!

Depending on the choice of the task's reference frame
and the types of joints you'd need to incorporate

centripetal, Euler and Coriolis accelerations

ψ(q)d i

dti

ψ(q)d i

dti

11 . 6

WHY YOU SHOULD CARE

safely reduce the motion execution frequency
better tracking performance of the actuators
easily extendable for different actuator types (e.g.,
speed driven actuators)
get rid of the hack to find a suitable "target position"
for classic actuators

12 . 1

TRACKING PERFORMANCE:

update rate 500Hz

13 . 1

update rate 10Hz

13 . 2

update rate 5Hz

13 . 3

TRACKING PERFORMANCE (NO ACC AND VEL):

update rate 500Hz

14 . 1

update rate 10Hz

14 . 2

update rate 5Hz

14 . 3

DEMO

15

TRACKING PERFORMANCE (NO ACC):

update rate 500Hz

16 . 1

update rate 10Hz

16 . 2

update rate 5Hz

16 . 3

