
The NUbots Software Overview for RoboCup
2023

Joe Bailey, Darcy Byrne, Clayton Carlon, Stephan Chalup, Lachlan Court,
Liam Craft, Jason Disher, Joel Ferguson, Luke Haigh, Utkrisht Jain, Sam
McFarlane, Alexandre Mendes, Cameron Murtagh, Alana Noonan, Thomas

O’Brien, Jesse Perrin, Ysobel Sims, and Jesse Williamson

Newcastle Robotics Laboratory
College of Engineering, Science and Environment

The University of Newcastle, Callaghan 2308, Australia
Contact: nubots@newcastle.edu.au

Homepage: http://robots.newcastle.edu.au

1 Walking

NUbots currently use Bit-Bots’ Quintic Walk [3] based off Rhoban’s Quintic
Walk [7] and Rhoban’s IK Walk [7]. This is an open loop walk engine that
creates quintic splines representing the three-dimensional trajectory of the feet
and torso both in rotation and translation. The engine interpolates over these
splines to find the next target position for the feet, which is then converted into
servo joint angles using inverse kinematics.

NUbots use an approximate analytical solution for the inverse kinematics of
the NUgus robot based on geometry.

Updates to the walk engine computations in late 2022 have removed the lean
in the walk on the NUgus robots and resulted in a better walk overall. A new
walk tune results in a faster walk that responds well to changes in the velocity
command, with better mobility which will enable behaviour improvements.

A current mechatronics final year undergraduate project has shown success
with a new quasi-static walk engine and a dynamic zero moment point based
walk engine in simulation. Another project involves developing a modular walk
engine system, initially comprising of dynamic motion planners and a static walk
engine.

2 Vision

The Visual Mesh [4] underpins the vision system, and is used for sparse detection
of balls, points on the field, field lines, goal posts and other robots.

The visual mesh is a convolutional neural network for object detection based
on a mesh which samples pixels from an image. The mesh is depth independent
and the number of mesh points is small enough to allow a CNN to run in real-
time on a humanoid robot. Tests on the CPU from the Intel® NUC7i7BNH show



2

that a nine layer visual mesh had an execution time of 2.44ms [4]. Furthermore,
the visual mesh does not degrade in accuracy when objects occur at different
distances, due to the depth independence introduced by using the mesh. The
visual mesh was used to detect a soccer ball on a field up to 10m away from the
camera [4]. It can detect soccer balls, robots, field lines and goal posts, however
it is built assuming the object to be detected is spherical.

The visual mesh is created using the following geometric assumptions for
each image:

1. The camera lens type, height and orientation with respect to the ground are
known.

2. The object is spherical with known radius and remains on the ground.

The height, orientation and radius are used to create a set of unit vectors
based at the camera position. Any vector with origin at the camera can be
thought of as a ray of light travelling towards the camera. If the vector is within
the field of view of the camera it will be collected by the lens. The vector is
mapped to a point on the image using the lens projection equation, provided the
point is within the bounds of the image sensor of the camera. The visual mesh is
formed by taking an array of vectors and associating each of them with a point
and pixel in the image. The array of vectors is specially constructed using two
equations to efficiently sample the space around the camera for the object. This
means the points (sample points) on the image will efficiently sample the image
for the object. Because the vectors are generated in the space around the camera,
the sample is consistent despite changes in lens type, image resolution, and the
apparent size of an object due to distance. Each sample point is connected to
its six closest neighbours and these connections become the edges of the mesh.
A fully convolutional neural network [8] is used on the mesh where each sample
point and it’s neighbours become the input to a convolution. All layers in the
network use seven points convolutions since there are six neighbours for each
sample point. A parameter controls the number of sample points on the object
which determines the level of detail available to the network.

The height and orientation of the camera is tracked using the kinematics and
inertial measurement unit of the robot. The radius of the soccer ball is given.
The unit vectors only need to be calculated once for each height and radius pair.
As the robot walks its height varies. A series of visual meshes for different heights
are calculated on startup. For each image this information is recorded and the
appropriate visual mesh is chosen. A binary search pattern is used to select the
vectors that will become points on the image based on the camera’s orientation.
The partitions of the binary search pattern are built on startup and the search
is run in real-time. Every training and run-time image is converted into the
mesh before the network is run. The network labels each point of the mesh with
the probability it belongs to an object class. A post-processing algorithm based
on the probabilities of the mesh can cluster the sample points to determine an
object’s position.

From the visual mesh a series of specialised detectors are employed to detect
field edges, balls, and goal posts. All calculations in all detectors are done in



3

three-dimensional world coordinates. Firstly, all points that the Visual Mesh has
identified as either field points or field line points are clustered into connected
regions and, each cluster is then either merged or discarded using some heuristics
until a single cluster remains. Finally, an upper convex hull algorithm is applied
to the final cluster determine the edge of the field.

The ball detector forms clusters out of all the points that the Visual Mesh has
identified as ball points. Specifically, the clusters are formed from Visual Mesh
points that are identified as being a ball point, but have at least 1 neighbour
which is not a ball point. This allows us to form clusters of ball edge points.
Any clusters which are not below the field edge are discarded. A circular cone
is then fitted to each cluster. The cone axis is determined from the line segment
between the centre on the camera and the average of all ball edge points. The
radius of the cone is determined by the maximum distance between the ball edge
points and the average of all of the ball edge points. Different heuristics, such
as degree of circle fit and different distance metrics, are then used to discard to
cones.

The goal post detector follows a similar structure to the ball detector. Clus-
ters are formed from goal post edge points and any clusters that do not intersect
the field edge are discarded. The bottom centre point of the goal post is then
found by averaging the edge points. The distance to the goal posts are deter-
mined and if there are multiple goal posts detected an attempt is made to assign
leftness and rightness to each post.

The field line points from the visual mesh are collected and fed into the
localisation system, which will determine how those points are used.

While the vision system does have the capability to classify robot pixels, a
future goal is to use this information to know the location of individual robots.
This information could then be used in the behaviour system for obstacle avoid-
ance. Implementation is schedule in the NUbots roadmap in time for RoboCup
2023.

3 Localisation

The localisation on-board the robot is performed using a Particle Filter. This
allows us to maintain multiple hypotheses about the current pose of the robot,
providing robustness against the mirrored field problem and having multiple po-
tential initial positions when entering the field. The filter relies on measurement
updates from the vision module, and on IMU data for time updates. The mea-
surement update previously only tracked the four goal post locations; however,
the team is working on a grid fitting method using field lines to enhance the
robot’s ability to localise.

4 Behaviour

The robot’s behaviour is a basic state machine where, during the playing state,
the robot will look for the ball and goals using head movements and the vision



4

system, position itself to kick the ball toward the goals using a simple path
planning algorithm and the walk engine, and then kick when it determines it is
in the right position to kick. The vision system alongside localisation determines
which foot the robot will kick with. The robot will only move its head during
the initial state and look for features on the field and localise itself. In the ready
state it will walk to a specific position on the field. In the set state, it will stop
moving.

The team is working on implementing a new behaviour framework called
the Director. Within the Director, there are tasks and providers. Examples of
tasks are ‘walk to ball’, ‘walk’, ‘left hip yaw servo’, each defined as a Protobuf
message. Each task may contain some information, i.e. the ‘walk’ task may have
velocity information, and ‘left hip yaw servo’ task may have joint angle, gain
and torque. Providers take a particular task and execute code that will perform
that task. For example, the walk engine will be a ‘walk’ provider that contains a
velocity command. The system aims to be highly modular, with small providers
that provide the functionality for specific tasks such as ‘look at ball’ or ‘walk
to ball’. A group of providers provide the functionality for the same task, e.g.
there may be providers that implement a ‘stable static walk’ and a ‘fast dynamic
walk’ which both provide for the task ‘walk’, but in different contexts. Only one
provider in a group can have access to the task and run.

Providers will often emit tasks of their own. In some cases, if they cannot emit
these tasks then there is little point in running. For example, the walk engine
needs access to the servos in all limbs. Another provider for ‘getting up’ may
also want access to all servos in the limbs. These will have different priorities in
the system. The Director algorithm will create trees of potential solutions and
determine which solution should run.

Some providers may need the system to be in a particular state to run. For
example, the ‘kick’ provider may require that the robot is in a standing position
before running. This is specified in the kick provider, and it will not be a valid
solution for the Director algorithm unless that state is satisfied. Providers can
also declare that when they run, the system will achieve a particular state. A
special ‘walk’ provider may cause the robot to end in a standing position. This
provider would not usually run, as it does not perform the usual activity of the
‘walk’ task. However, if the ‘kick’ has higher priority than the ‘walk’, it will
force the ‘walk’ task to be done by the special walk provider that guarantees a
standing state, so that the kick will be a valid solution to the Director algorithm.
This aims to improve transitions, so that before a new task runs it ensures it is
in the right state.

With the transition of the codebase to the Director framework in 2023, the
behaviour system will undergo an overhaul. This will include the additions of
specific play styles for striker, defender and goalie with better decisions.

It is intended that by the 2023 competition, the robots will be able to identify
other robots on the field. If this is achieved, the behaviour overhaul will include
the addition of robot avoidance. In addition, robot-to-robot communication using
the official RoboCup communication protocol will be implemented.



5

5 Contributions to RoboCup

The NUbots team participated in the 2021 Humanoid Kid-Size League and fin-
ished as semi-finalists. The NUbots have participated in the Four Legged League
(2002-2007), the Standard Platform League (2008-2011), the Kid-Size Humanoid
League (2012-2017, 2022), and the Teen-Size Humanoid league (2018-2019).
NUbots were the Four Legged League world champions in 2006. The team won
the first Standard Platform League in 2008 as team NUManoid in collaboration
with the National University of Maynooth, Ireland.

The team’s RoboCup robot code [5], hardware [9], and debugging tools [2]
are open source on GitHub.

The NUbots team have developed a Blender plugin to generate semi-synthetic
images with fully-annotated ground truth segmentation maps [1]. The images
contain random ball positions, robot positions and kinematic poses, obstacles,
and viewer orientations. This tool is public on GitHub for anyone in the League
to use.

The NUbots team maintains a comprehensive documentation resource in the
form of a public website [6], providing detailed information about the hardware
and software systems, as well as guides on various aspects of our systems. This
resource aims to be useful to other RoboCup teams, as well as the wider robotics
and AI community.

References

1. M. Amos and A. Biddulph. NUbots PBR pipeline repository. https://github.

com/nubots/NUpbr.
2. B. Annable, T. Houliston, M. Olejniczak, J. Paye, A. Biddulph, and L. Court.

NUsight2 real-time web-based debugging utility code repository. https://github.
com/NUbots/NUbots/tree/main/nusight2.

3. Team BitBots. Bitbot’s quintic walk. https://github.com/bit-bots/bitbots\

_motion/.
4. Trent Houliston and Stephan K. Chalup. Visual mesh: Real-time object detection

using constant sample density. CoRR, abs/1807.08405, 2018.
5. M. Metcalfe, J. Fountain, A. Sugo, T. Houliston, A. Biddulph, A. Dabson, T. John-

son, J. Johnson, B. Annable, S. Nicklin, S. Fenn, D. Budden, J. Walker, J. Reitveld,
Y. Sims, T. Young, M. Amos, D. Ginn, K. Hamiltons, J. Paye II, C. Murtagh,
Y. de Koeyer, L. Court, L. Craft, P. Carlyle, A. Hall, T. O’Brien, and S. McFar-
lane. NUbots robocup code repository. https://github.com/nubots/NUbots.

6. J. Paye and Y. Sims. NUbots handbook. https://github.com/NUbots/NUbook.
7. Team Rhoban. Rhoban’s quintic walk. https://github.com/Rhoban/model/.
8. E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):640–651, April 2017.

9. T. Young and A. Biddulph. NUbots hardware repository. https://github.com/

nubots/NUware.


