
RO:BIT Team Software Description Paper

for Humanoid KidSize League of RoboCup 2023

Joon Ho Koh, Yong Yeon Kwon, Ji Hun Park, Dong Hui Jo

Jong Yeop Jeong, Seung Won Jang, Dae Kyum Kim, So Jeong Yoon

Robot sports game team of Humanoid Robot

 School of Robotics, Kwangwoon University, Republic of Korea

joonho_koh@naver.com

Abstract. This document describes overall system of how robot

works, image processing and dynamic control of humanoid. Our

team strengthened competitiveness based on the experience of

RoboCup 2019 and RoboCup 2022. We participate Humanoid

KidSize League of RoboCup 2023 with improved technology

compared to 2022’s robot.

1 Introduction

Team RO:BIT is a professional robot game team of Kwangwoon University in Re-

public of Korea, established in November 2006. Humanoid team in RO:BIT research

autonomous humanoid and participates in several domestic and international competi-

tions. We basically research in 4 fields: image processing(vision), robot design, con-

trol of biped walking, and control system circuit.

2 Vision

2.1 Object Detection

We adopted deep learning for detecting a ball.

Fig.1. Deep Learning detection result

We used the YOLO[1] model. Since the main PC we are currently using does not

have external graphics, we recognize the object using the YoloV4-tiny [2] model,

which is the lightest model on Yolo. Originally, YoloV3-tiny was used, but YoloV4-

tiny model is used for speed and accuracy. Learning was run on an external PC and

only Learned data was imported and used. We succeeded in recognizing the crossing

line of the field (X-Cross) and the ball as a result of learning (refer to Fig. 1).

We detected penalty-mark through image processing (refer to Fig. 2). The recog-

nized data will be used as the data required for localization.

Fig. 2. Penalty-Mark detection result Fig. 3. Result of line detection algorithm

Fig. 4. Localization using vision data

Line was detected through image processing. First, convert the RGB image into

HSV color space, and after canny edge detection, connect each edge through the con-

tour and finally detect the line through the Hough Transform (refer to Fig. 3). So, we

detect the edge of the white line and pick some points from the outside lines. This is

used as data needed for localization (refer to Fig. 4). And We will try to develop new

vision system to recognize the ball and line through deep learning using semantic

segmentation model.

2.2 Camera calibration

All objects in the field of play are perceived using camera sensor. To recognize ro-

bot’s state in the field distance and orientation of interested object from robot is re-

quired. However, objects are projected on a 2D coordinate frame of camera in pixels.

Geometric method is used to convert objects position in 2D coordinate frame in pixels

to 3D world coordinate frame. This method is executed using intrinsic camera param-

eters(focal length and principal point) and using extrinsic camera parameters(height

of camera from the field and tilt of camera). Extrinsic parameters are given that we

know robot’s height and tilt is controlled by main-controller (mini-pc). Intrinsic pa-

rameters are products of camera calibration [3]:

 𝐀 = [
𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0

0 0 1 0

] (1)

where (𝑓𝑥, 𝑓𝑦) is focal length, and (𝑐𝑥, 𝑐𝑦) is principal point. Afterward, 2D coordinate

frame in pixels is converted to coordinate frame of image plane (𝑢, 𝑣):

𝑢 = (𝑥 − 𝑐𝑥) 𝑓𝑥⁄

𝑣 = (𝑦 − 𝑐𝑦) 𝑓𝑦⁄
(2)

where p(𝑥, 𝑦) is object’s coordinate in pixels. Using coordinate of image plane (𝑢, 𝑣),

height of camera h and tilt 𝜃𝑡𝑖𝑙𝑡, distance and orientation of interested objects(ball, X-

cross, Penalty-Mark) from robot are calculated:

𝐶𝐶′ = ℎ

𝐶′𝑃′ = 𝐶𝐶′ × tan (
𝜋

2
 + 𝜃𝑡𝑖𝑙𝑡

− atan(𝑣))

𝐶𝑃′ = √(𝐶𝐶′)2 + (𝐶′𝑃′)2

𝐶𝑝′ = √1 + 𝑣2

𝑃𝑃′ = 𝑢 × 𝐶𝑃′ 𝐶𝑝′⁄

𝑑 = √(𝐶′𝑃′)2 + (𝑃𝑃′)2

𝜃 = −atan2(𝑃𝑃′, 𝐶′𝑃′)

(3)

Fig. 5. Geometric method

where 𝐶(0, 0, ℎ) is camera’s position in 3D world coordinate frame, 𝑐(0, 0) the prin-

cipal point in image plane, P position of object in 3D world coordinate frame, and d

and 𝜃 are distance and orientation of object from robot. Last two products of equa-

tions (3) are used in our localization system.

3 Localization

Fig. 6. Feature Points in Field

Our team's localization system based on Monte-Carlo-Localization [4] using walking

odometry and location prediction with feature points. (Refer to Fig.6) Location with

highest probability is predicted as exact location of the robot on field through Motion

Model-Observation Model-Resampling process [5].

image

plane

3.1 Motion Model

Fig. 7. Localization UI (Start/Playing)

The Initial Position of robot is specified. (Refer to Fig.7, Set Initial Position in Lo-

calization UI when game start.) We can know about direction and distance to travel of

robot using IMU sensor and odometry model based on walking of robot. However, in

this method has poor accuracy over time due to accumulated errors. So, it goes

through the process of correcting the location using MCL.

Since MCL’s motion model uses the odometry model, there are accumulated errors

between the theoretical travel distance and the actual travel distance. For this reason,

whenever the robot moves, particles are spread throughout the map. Using gaussian

noise, we make the particles spread further.

Fig.7 is the localization UI. Red points are particles that mean a location where the

robot may be. Blue square is the most likely place to have robot among particles are

spread. At time goes by, you can see that the particles are scattered throughout the

map by gaussian noise

3.2 Observation Model

Fig. 8. Likelihood Field (characteristic lines)

Likelihood Field is a model that stores weights values according to each location.

We can compute weights and create likelihood field applying likelihood-field-range-

find model Algorithm [6]. Where (𝑥𝑘 , 𝑦𝑘) is 𝑘𝑡ℎ point, and (𝑥′, 𝑦′) is characteristic

line points. Afterward, nearest Euclidean distance is calculated between random point

and line points(1). And distance is checked by max range reading variance 𝑧𝑚𝑎𝑥(2).

Finally, weight 𝑞 is computed using zero-centered gaussian normal distribution and

uniform distribution with variance 𝜎ℎ𝑖𝑡 (3):

 𝑞 = 1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑑𝑜

 𝑑𝑖𝑠𝑡 = 𝑚𝑖𝑛{√(𝑥𝑘 − 𝑥′)2 + (𝑦𝑘 − 𝑦′)2}

 𝑖𝑓 𝑑𝑖𝑠𝑡 < 𝑧𝑚𝑎𝑥 (2)

 𝑞 = 𝑞 ∙ 𝑧ℎ𝑖𝑡 ∙
1

𝜎ℎ𝑖𝑡√2𝜋
∙ 𝑒

−
𝑑𝑖𝑠𝑡2

2𝜎ℎ𝑖𝑡
2

+
𝑧𝑟𝑎𝑛𝑑𝑜𝑚

𝑧𝑚𝑎𝑥
 (3)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑞

To create a likelihood field with the appropriate weights, we should control four pa-

rameters (𝑧ℎ𝑖𝑡 , 𝑧𝑟𝑎𝑛𝑑𝑜𝑚, 𝑧𝑚𝑎𝑥 , 𝜎ℎ𝑖𝑡). 𝑧ℎ𝑖𝑡 and 𝜎ℎ𝑖𝑡 are variables related to measurement

accuracy, 𝑧𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑧𝑚𝑎𝑥 are variables related to measurement noise.

 In the current model, the farther away from the center of the white line in the field,

the lower the weight. We used the likelihood field to give weight to the particles to

correct the robot's position. There is a slight difference in how data obtained through

image is applied to the Monte-Carlo Localization (MCL) method, and in how we give

weights. When measuring data for a line is obtained, each particle is weighted using

the pre-calculated likelihood field (refer to Fig.8) with the distance and direction to

the start and end points of the line received by the vision module

In the past, we start correcting the location when robot recognize any white lines an-

ywhere. However, it was confirmed that the robot’s position accuracy was poor be-

cause there were many white lines in the field. To solve this problem, we changed

likelihood field with only characteristic line as shown in Fig.8.

3.3 Resampling

Fig. 9. Resampling Particles and Correct Location

Fig.9 is the resampling process in playing. First, we spread particles used motion

model. Second, give the weights used observation model. Finally, we are proceeding

resampling process that chosen particles have high weight. When estimating the ro-

bot's position using only the Motion model, the robot's position may not be correct

over time. So, the robot's position is corrected through the correction process men-

tioned 3.2 and the Resampling process.

4 Walking Control

4.1 Kinematics

Our team solves the inverse kinematics of our robot's both leg with 12 degrees of

freedom. Both leg with 12 degrees of freedom is divided into the left leg (6 degree of

freedom) and the right leg (6 degree of freedom) from the center of the pelvis to solve

inverse kinematics [7]. Use both ends of the robot's legs as end effectors and deter-

mine the angle of each motor based on the center of the pelvis. The motor angle can

be determined according to the change of coordinate of the end effector.

Fig. 10. Link Coordinate Frames of the Right Leg of a Our Humanoid Robot

Right Leg link D-H Parameter
Joint 𝛉𝐢 𝛂𝐢 𝐚𝐢 𝐝𝐢

1 0 90º 0 0

2 -90º -90º 0 0

3 0 0 L3 0

4 0 0 L4 0

5 0 90º 0 0

6 0 0 L5 0

Fig. 11. D-H Parameter

4.2 Walk Pattern

Our team generates moving patterns on the end effectors that are both humanoid an-

kle joint. The patterns are geometrically created on the x, y, and z coordinate planes,

and the trajectory is generated using a fifth polynomial. Using a fifth polynomial, we

draw a continuous trajectory without discontinuity of elements such as velocity, ac-

celeration, etc. The pattern consists of eight variables that we can adjust passively:

first time, first position, first velocity, first acceleration, later time, later position, later

velocity, and later acceleration. These walking parameters can be adjusted passively

to create the detailed shape of the orbit. Our team uses a manual tuning program that

can easily adjust parameters and quickly test responses to adjustments and finds opti-

mal parameter values that make walking the most stable through trial and error.

Fig. 12. Our Walk Pattern Right Leg x, y, z Coordinate when walking

Fig. 13. Our manual tuning program

4.3 Push Recovery

In order to withstand collisions with other robots and walk stably on artificial grass

field, humanoids must have the ability to respond to various obstacles. Therefore, our

team improved walking stability by using the IMU (Initial Measurement Unit) to

detect disturbance and allow the robot to control PID and feedback appropriately. To

estimate the angle of the robot's torso and use it for feedback control, the IMU is at-

tached to the body part the closest to the center of mass of the robot such as between

the hip joints.
Our team measures ZMP (Zero Moment Point) from the robot's COP (Center Of

Pressure) using feet with four load cells attached [8]. Based on the ZMP value meas-

ured in this way, the target ZMP can be reached through PID control so that the ro-

bot's ZMP does not deviate from the support polygon (foot supporting the robot) [9].
The PID controller controls the position of the pelvis, knee, and ankle joints. If the

estimated value of the ZMP value and the robot's torso angle each exceeds the set

value. threshold value, the final compensation value is determined through the PID

controller [10]. And using that value, the pelvic, knee, and ankle joints are controlled

to compensate for the errors in original inverse kinematics and restore the robot's

torso angle and ZMP value to the normal range. This process helps prevent the robot

from losing balance and falling and keep the ZMP in the support polygon. The con-

troller's parameters and thresholds are also set as manual program through trial and

error.

Fig. 14. Our Load Cell Control & IMU

Fig. 15. Closed loop controller

Behavior

4.4 Overview of system

Fig. 16. overview system of robot

Our robot system consists of a C920R Logitech USB camera, a NUC7i7 main con-

troller. Main controller executes overall algorithms and image processing on Linux

using ROS (Robot Operating System). Sub controller, circuit with MCU based on

STM32F446RE, processes gyroscope acceleration data, load cell data and controls

motors (DOF). Gyroscope acceleration is filtered and used to determine fall of robot

and for balance control, and such data is transferred to main controller via RS-232.

Load cell used to determine humanoid COP (Center Of Pressure), and such data is

transferred to main controller via RS-232. The main controller and the sub controller

are connected by serial communication.

Based on the data obtained from the image processing and sub controller, the main

controller program the whole robot driving algorithm and transfers the necessary mo-

tor motions to the sub controller, and the sub controller executes the kinematics and

motion based on the data.

4.5 UDP Communication

Fig. 17. UDP communication program

We are using UDP communication to share the position of the robot and the position

of the ball for our team play. First, we find IP address, and connect UDP socket and

communication port. Through this, collisions between robots were prevented or

movement was prioritized to enable high-quality team games. In addition, this allows

us to operate the game strategically and carry out cooperative missions such as tech-

nical challenges

4.6 Overview of Soccer Algorithm

Fig. 18. Overview of Soccer Algorithm

Our team has been participating in the RoboCup for several years, and we've devel-

oped a lot about how to walk efficiently towards the ball, how robots can exchange

data on the ball, and team play. First, when there are two or more robots in the stadi-

um, we each move the robot's pan-tilt motor to find the ball and then we walk around

their set areas and quickly search it in a wide field if we can't find it for a several

times. If our team's robot finds the ball, the robot works in the same Wi-Fi environ-

ment, so we can share the data we get from each other using UDP method. And we

share the robot's position on the field. So, to save time and efficiently play soccer, the

robot that is close to the ball approaches and kicks the ball, and the other robot moves

forward or sideways depending on the position of the ball so that it doesn't get in the

way of the robot kicking the ball. Also, it creates a curved path from the robot's cur-

rent position to the ball so that the kicker aligns with the opponent's goal post and

quickly maintains kickable distance.

Our team has an algorithm for goalkeepers. In each section, when the ball is outside

the penalty box, it gives information about the ball to the player robot and does not

move. Then when the ball is in the penalty box, it aligns the x-coordinates of the ball

and the keeper robot itself. And when the ball was int the penalty box, we created an

algorithm to kick the ball and kick the ball and get it back to its seat.

Reference

1. Joseph Redmon∗, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only Look Once:

Unified, Real-Time Object Detection”, IEEE Conference on Computer Vision and Pattern

Recognition, 2016 IEEE Conference on. :779-788 Jun, 2016

2. YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolo/

3. L. Deng, G. Lu, Y. Shao, M. Fei and H, Hu, “A Novel Camera Calibration Technique based

on Differen tial Evolution Particle Swarm Optimization Algorithm”, Neurocomputing, vol.

174, pp. 456-465, Jan 2016.

4. A. C. Almeida, A. H. R. Costa and R. A. C. Bianchi, "Vision-based monte-carlo localization

for humanoid soccer robots," 2017 Latin American Robotics Symposium (LARS) and 2017

Brazilian Symposium on Robotics (SBR), Curitiba, pp. 1-6, 2017

5. I. Nagi, W. Adiprawita and K. Mutijarsa, "Vision-based Monte Carlo localization for Ro-

bocup Humanoid Kid-Size League," 2014 13th International Conference on Control Automa-

tion Robotics & Vision (ICARCV), Singapore, pp. 1433-1438, 2014

6. S Sebastian Thrun, Dieter Fox, Wolfram Burgard, “PROBABILISTIC ROBOTICS”, pp.

139-200, 1999-2000.

7. M. A. Ali, H. Andy Park and C. S. G. Lee, "Closed-form inverse kinematic joint solution for

humanoid robots", 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, Taipei, pp. 704-709, 2010.

8. Youngjin Choi, Doik Kim, Yonghwan Oh, and Bum-Jae You, “Posture/Walking Control of

Humanoid Robot based on the Kinematic Resolution of COM Jacobian with Embedded Mo-

tion”, IEEE Transactions on Robotics, vol. 23, No. 6, pp. 1285-1293, Dec 2007.

http://kupis.kw.ac.kr/eds/brief/discoveryResult?st=KWRD&service_type=brief&si=SO&q=2016%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR),%202016%20IEEE%20Conference%20on.%20:779-788%20Jun,%202016
http://kupis.kw.ac.kr/eds/brief/discoveryResult?st=KWRD&service_type=brief&si=SO&q=2016%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR),%202016%20IEEE%20Conference%20on.%20:779-788%20Jun,%202016
https://pjreddie.com/darknet/yolo/

9. Napoleon, Shigekhi NaKaura, and Mitsuji Sampei, “Balance Control Analysis of Humanoid

Robot based on ZMP Feedback Control”, IEEE International Conference on Robotics and

Automation, vol. 3, pp. 2437-2442, Oct 2002.

10. Yisoo Lee, Jaeheung Park "Real-Time Force Control of Biped Robot to Generate High-

Speed Horizontal Motion of Center of Mass", Journal of Korea Robotics Society, Korea, pp.

1-10,2016

