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Abstract. This document describes overall system of how robot 

works, image processing and dynamic control of humanoid. Our 

team strengthened competitiveness based on the experience of 

RoboCup 2019 and RoboCup 2022. We participate Humanoid 

KidSize League of RoboCup 2023 with improved technology 

compared to 2022’s robot. 

1 Introduction 

Team RO:BIT is a professional robot game team of Kwangwoon University in Re-

public of Korea, established in November 2006. Humanoid team in RO:BIT research 

autonomous humanoid and participates in several domestic and international competi-

tions. We basically research in 4 fields: image processing(vision), robot design, con-

trol of biped walking, and control system circuit.  

2 Vision 

2.1 Object Detection 

We adopted deep learning for detecting a ball. 

 

 



Fig.1. Deep Learning detection result 

We used the YOLO[1] model. Since the main PC we are currently using does not 

have external graphics, we recognize the object using the YoloV4-tiny [2] model, 

which is the lightest model on Yolo. Originally, YoloV3-tiny was used, but YoloV4-

tiny model is used for speed and accuracy. Learning was run on an external PC and 

only Learned data was imported and used. We succeeded in recognizing the crossing 

line of the field (X-Cross) and the ball as a result of learning (refer to Fig. 1).  

We detected penalty-mark through image processing (refer to Fig. 2). The recog-

nized data will be used as the data required for localization. 

 

 
Fig. 2. Penalty-Mark detection result                Fig. 3. Result of line detection algorithm 

 

 
Fig. 4. Localization using vision data 

 

Line was detected through image processing. First, convert the RGB image into 

HSV color space, and after canny edge detection, connect each edge through the con-

tour and finally detect the line through the Hough Transform (refer to Fig. 3). So, we 

detect the edge of the white line and pick some points from the outside lines. This is 

used as data needed for localization (refer to Fig. 4). And We will try to develop new 

vision system to recognize the ball and line through deep learning using semantic 

segmentation model. 



2.2 Camera calibration 

All objects in the field of play are perceived using camera sensor. To recognize ro-

bot’s state in the field distance and orientation of interested object from robot is re-

quired. However, objects are projected on a 2D coordinate frame of camera in pixels. 

Geometric method is used to convert objects position in 2D coordinate frame in pixels 

to 3D world coordinate frame. This method is executed using intrinsic camera param-

eters(focal length and principal point) and using extrinsic camera parameters(height 

of camera from the field and tilt of camera). Extrinsic parameters are given that we 

know robot’s height and tilt is controlled by main-controller (mini-pc). Intrinsic pa-

rameters are products of camera calibration [3]: 

 

 𝐀 = [
𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0

0 0 1 0

] (1) 

 

 

where (𝑓𝑥, 𝑓𝑦) is focal length, and (𝑐𝑥, 𝑐𝑦) is principal point. Afterward, 2D coordinate 

frame in pixels is converted to coordinate frame of image plane (𝑢, 𝑣): 

 

 
𝑢 =  (𝑥 −  𝑐𝑥) 𝑓𝑥⁄  

𝑣 =  (𝑦 − 𝑐𝑦) 𝑓𝑦⁄  
(2) 

 

where p(𝑥, 𝑦) is object’s coordinate in pixels. Using coordinate of image plane (𝑢, 𝑣), 

height of camera h and tilt 𝜃𝑡𝑖𝑙𝑡, distance and orientation of interested objects(ball, X-

cross, Penalty-Mark) from robot are calculated: 

 

 

𝐶𝐶′ = ℎ 

𝐶′𝑃′ = 𝐶𝐶′ ×  tan (
𝜋

2
 +  𝜃𝑡𝑖𝑙𝑡

−  atan(𝑣)) 

𝐶𝑃′ =  √(𝐶𝐶′)2  +  (𝐶′𝑃′)2 

𝐶𝑝′ =  √1 +  𝑣2 

𝑃𝑃′ = 𝑢 × 𝐶𝑃′ 𝐶𝑝′⁄  

𝑑 =  √(𝐶′𝑃′)2  +  (𝑃𝑃′)2 

𝜃 =  −atan2(𝑃𝑃′, 𝐶′𝑃′) 

 

(3) 

 



 
Fig. 5. Geometric method 

 

where 𝐶(0, 0, ℎ) is camera’s position in 3D world coordinate frame, 𝑐(0, 0) the prin-

cipal point in image plane, P position of object in 3D world coordinate frame, and d 

and 𝜃 are distance and orientation of object from robot. Last two products of equa-

tions (3) are used in our localization system. 

3 Localization 

 
Fig. 6. Feature Points in Field 

 

Our team's localization system based on Monte-Carlo-Localization [4] using walking 

odometry and location prediction with feature points. (Refer to Fig.6) Location with 

highest probability is predicted as exact location of the robot on field through Motion 

Model-Observation Model-Resampling process [5].  

image 

plane 



3.1 Motion Model 

 
Fig. 7. Localization UI (Start/Playing) 

 

The Initial Position of robot is specified. (Refer to Fig.7, Set Initial Position in Lo-

calization UI when game start.) We can know about direction and distance to travel of 

robot using IMU sensor and odometry model based on walking of robot. However, in 

this method has poor accuracy over time due to accumulated errors. So, it goes 

through the process of correcting the location using MCL. 

Since MCL’s motion model uses the odometry model, there are accumulated errors 

between the theoretical travel distance and the actual travel distance. For this reason, 

whenever the robot moves, particles are spread throughout the map. Using gaussian 

noise, we make the particles spread further. 

Fig.7 is the localization UI. Red points are particles that mean a location where the 

robot may be. Blue square is the most likely place to have robot among particles are 

spread. At time goes by, you can see that the particles are scattered throughout the 

map by gaussian noise 

3.2 Observation Model 

 
Fig. 8. Likelihood Field (characteristic lines) 

 



Likelihood Field is a model that stores weights values according to each location. 

We can compute weights and create likelihood field applying likelihood-field-range-

find model Algorithm [6]. Where (𝑥𝑘 , 𝑦𝑘) is 𝑘𝑡ℎ point, and (𝑥′, 𝑦′) is characteristic 

line points. Afterward, nearest Euclidean distance is calculated between random point 

and line points(1). And distance is checked by max range reading variance 𝑧𝑚𝑎𝑥(2). 

Finally, weight 𝑞 is computed using zero-centered gaussian normal distribution and 

uniform distribution with variance 𝜎ℎ𝑖𝑡 (3): 

 

                                𝑞 = 1 

                                    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑑𝑜 

                                        𝑑𝑖𝑠𝑡 = 𝑚𝑖𝑛{√(𝑥𝑘 − 𝑥′)2 + (𝑦𝑘 − 𝑦′)2}                          

                                   𝑖𝑓 𝑑𝑖𝑠𝑡 < 𝑧𝑚𝑎𝑥                                                                    (2) 

                                                𝑞 = 𝑞 ∙ 𝑧ℎ𝑖𝑡 ∙
1

𝜎ℎ𝑖𝑡√2𝜋
∙ 𝑒

−
𝑑𝑖𝑠𝑡2

2𝜎ℎ𝑖𝑡
2

+
𝑧𝑟𝑎𝑛𝑑𝑜𝑚

𝑧𝑚𝑎𝑥
                    (3) 

                             𝑟𝑒𝑡𝑢𝑟𝑛 𝑞                                                                                       

 

To create a likelihood field with the appropriate weights, we should control four pa-

rameters (𝑧ℎ𝑖𝑡 , 𝑧𝑟𝑎𝑛𝑑𝑜𝑚, 𝑧𝑚𝑎𝑥 , 𝜎ℎ𝑖𝑡). 𝑧ℎ𝑖𝑡  and 𝜎ℎ𝑖𝑡 are variables related to measurement 

accuracy, 𝑧𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑧𝑚𝑎𝑥  are variables related to measurement noise. 

   In the current model, the farther away from the center of the white line in the field, 

the lower the weight. We used the likelihood field to give weight to the particles to 

correct the robot's position. There is a slight difference in how data obtained through 

image is applied to the Monte-Carlo Localization (MCL) method, and in how we give 

weights. When measuring data for a line is obtained, each particle is weighted using 

the pre-calculated likelihood field (refer to Fig.8) with the distance and direction to 

the start and end points of the line received by the vision module 

In the past, we start correcting the location when robot recognize any white lines an-

ywhere. However, it was confirmed that the robot’s position accuracy was poor be-

cause there were many white lines in the field. To solve this problem, we changed 

likelihood field with only characteristic line as shown in Fig.8. 

3.3 Resampling 

 
Fig. 9. Resampling Particles and Correct Location 



 

Fig.9 is the resampling process in playing. First, we spread particles used motion 

model. Second, give the weights used observation model. Finally, we are proceeding 

resampling process that chosen particles have high weight. When estimating the ro-

bot's position using only the Motion model, the robot's position may not be correct 

over time. So, the robot's position is corrected through the correction process men-

tioned 3.2 and the Resampling process. 

4 Walking Control 

4.1 Kinematics 

Our team solves the inverse kinematics of our robot's both leg with 12 degrees of 

freedom. Both leg with 12 degrees of freedom is divided into the left leg (6 degree of 

freedom) and the right leg (6 degree of freedom) from the center of the pelvis to solve 

inverse kinematics [7]. Use both ends of the robot's legs as end effectors and deter-

mine the angle of each motor based on the center of the pelvis. The motor angle can 

be determined according to the change of coordinate of the end effector. 

 

Fig. 10. Link Coordinate Frames of the Right Leg of a Our Humanoid Robot 

 

Right Leg link D-H Parameter 
Joint 𝛉𝐢 𝛂𝐢 𝐚𝐢 𝐝𝐢 

1 0 90º 0 0 

2 -90º -90º 0 0 

3 0 0 L3 0 

4 0 0 L4 0 

5 0 90º 0 0 

6 0 0 L5 0 



Fig. 11. D-H Parameter 

4.2 Walk Pattern 

Our team generates moving patterns on the end effectors that are both humanoid an-

kle joint. The patterns are geometrically created on the x, y, and z coordinate planes, 

and the trajectory is generated using a fifth polynomial. Using a fifth polynomial, we 

draw a continuous trajectory without discontinuity of elements such as velocity, ac-

celeration, etc. The pattern consists of eight variables that we can adjust passively: 

first time, first position, first velocity, first acceleration, later time, later position, later 

velocity, and later acceleration. These walking parameters can be adjusted passively 

to create the detailed shape of the orbit. Our team uses a manual tuning program that 

can easily adjust parameters and quickly test responses to adjustments and finds opti-

mal parameter values that make walking the most stable through trial and error. 

 

Fig. 12. Our Walk Pattern Right Leg x, y, z Coordinate when walking 

 

Fig. 13. Our manual tuning program 
 



4.3 Push Recovery 

In order to withstand collisions with other robots and walk stably on artificial grass 

field, humanoids must have the ability to respond to various obstacles. Therefore, our  

team improved walking stability by using the IMU (Initial Measurement Unit) to 

detect disturbance and allow the robot to control PID and feedback appropriately. To 

estimate the angle of the robot's torso and use it for feedback control, the IMU is at-

tached to the body part the closest to the center of mass of the robot such as between 

the hip joints. 
Our team measures ZMP (Zero Moment Point) from the robot's COP (Center Of 

Pressure) using feet with four load cells attached [8]. Based on the ZMP value meas-

ured in this way, the target ZMP can be reached through PID control so that the ro-

bot's ZMP does not deviate from the support polygon (foot supporting the robot) [9].  
The PID controller controls the position of the pelvis, knee, and ankle joints. If the 

estimated value of the ZMP value and the robot's torso angle each exceeds the set 

value. threshold value, the final compensation value is determined through the PID 

controller [10]. And using that value, the pelvic, knee, and ankle joints are controlled 

to compensate for the errors in original inverse kinematics and restore the robot's 

torso angle and ZMP value to the normal range. This process helps prevent the robot 

from losing balance and falling and keep the ZMP in the support polygon. The con-

troller's parameters and thresholds are also set as manual program through trial and 

error. 
 

 
Fig. 14. Our Load Cell Control & IMU 

 

 
Fig. 15. Closed loop controller 



Behavior 

4.4 Overview of system 

 
Fig. 16. overview system of robot 

 

Our robot system consists of a C920R Logitech USB camera, a NUC7i7 main con-

troller. Main controller executes overall algorithms and image processing on Linux 

using ROS (Robot Operating System). Sub controller, circuit with MCU based on 

STM32F446RE, processes gyroscope acceleration data, load cell data and controls 

motors (DOF). Gyroscope acceleration is filtered and used to determine fall of robot 

and for balance control, and such data is transferred to main controller via RS-232. 

Load cell used to determine humanoid COP (Center Of Pressure), and such data is 

transferred to main controller via RS-232. The main controller and the sub controller 

are connected by serial communication. 

Based on the data obtained from the image processing and sub controller, the main 

controller program the whole robot driving algorithm and transfers the necessary mo-

tor motions to the sub controller, and the sub controller executes the kinematics and 

motion based on the data.  

 



4.5 UDP Communication 

 
Fig. 17. UDP communication program 

 

We are using UDP communication to share the position of the robot and the position 

of the ball for our team play. First, we find IP address, and connect UDP socket and 

communication port. Through this, collisions between robots were prevented or 

movement was prioritized to enable high-quality team games. In addition, this allows 

us to operate the game strategically and carry out cooperative missions such as tech-

nical challenges 

4.6 Overview of Soccer Algorithm 

 
Fig. 18. Overview of Soccer Algorithm 

 

Our team has been participating in the RoboCup for several years, and we've devel-

oped a lot about how to walk efficiently towards the ball, how robots can exchange 

data on the ball, and team play. First, when there are two or more robots in the stadi-

um, we each move the robot's pan-tilt motor to find the ball and then we walk around 

their set areas and quickly search it in a wide field if we can't find it for a several 

times. If our team's robot finds the ball, the robot works in the same Wi-Fi environ-

ment, so we can share the data we get from each other using UDP method. And we 



share the robot's position on the field. So, to save time and efficiently play soccer, the 

robot that is close to the ball approaches and kicks the ball, and the other robot moves 

forward or sideways depending on the position of the ball so that it doesn't get in the 

way of the robot kicking the ball. Also, it creates a curved path from the robot's cur-

rent position to the ball so that the kicker aligns with the opponent's goal post and 

quickly maintains kickable distance. 

Our team has an algorithm for goalkeepers. In each section, when the ball is outside 

the penalty box, it gives information about the ball to the player robot and does not 

move. Then when the ball is in the penalty box, it aligns the x-coordinates of the ball 

and the keeper robot itself. And when the ball was int the penalty box, we created an 

algorithm to kick the ball and kick the ball and get it back to its seat. 
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