
Robot Model Specifications v2.0
This document presents the constraints for creating robot models allowed to compete in the virtual humanoid soccer
competition. From now on, this document will only be updated in cases of serious concern.

If you developed or are using a tool which makes the process easier for you, feel free to share it with the TC. In case
you feel that your team requires elements which are not described in this document (e.g., specific contact properties
between the robot feet and the ground), contact the TC as soon as possible and we will examine your request.

Introduction
This document aims at providing teams with clear specifications regarding what is allowed in their robot models but
also advices on how to write their models and review the one provided by other teams.

The robot models for the competition will have to be written in the PROTO format. This format generally allows
for a wider variety of sensors than what can be used for the Humanoid League, therefore we will present additional
constraints in this document.

The main concerns of those rules and the reasons for these restrictions are the following:

• From a research point of view, this competition aims at providing an environment for transfer learning
through sim2real experiments.

• In order to achieve realism, the characteristics and design of the robots should resemble robots used in regular
competitions.

• To ensure a fair competition, teams who try to model their robots accurately by taking into account noise
models and flaws of their hardware should not be penalized with respect to others.

• Using an automatic referee implies a few additional constraints on the robot models.
• Since the resources available for the simulation are limited, restrictions on the architecture of robots and on

the accuracy of meshes may be required.

Teams can upload multiple robot models if they would like to play with different robots. In KidSize a maximum of 4
different robots is allowed. In AdultSize a maximum of 2 different robots is allowed.

Besides the robot model itself, a documentation similar to the robot specification in previous years, but more
extensive, needs to be provided. This documentation must include all relevant datasheets of the sensors used in the
robot (e.g. motors, acclerometers, gyroscopes, cameras) and a description of how the parameters in the proto were
derived from the datasheets.

For custom developed hardware, the test procedure of how the performance values were measured must be described.
When experiments have been run by the teams, sharing the raw data is encouraged.

While an example of values for the Dynamixel Motors MX28, MX64, MX106, and XH540-W270 are provided in the
appendix, teams can use custom values if they provide a proper benchmark of the hardware as justification.

Model constraints
All sensor and actuator nodes that are not explicitly mentioned in this section are forbidden during the competition.

Exported parameters

As the robot model must be in the PROTO syntax, the following fields have to be exposed:

• translation
• rotation
• name
• controllerArgs
• customData

All the exposed field are automatically filled by the referee. Other parameters may be exposed, but they will be
ignored (e.g. set to their default value).

It is encouraged to expose key parameters of the model such as the parameters for each type of motor used.

1

https://cyberbotics.com/doc/reference/proto

PROTO MyRobot [
field SFVec3f translation 0 0 0
field SFRotation rotation 0 1 0 0
field SFString name ""
field MFString controllerArgs []
field SFString customData ""
field SFFloat MX64-torque-12V 6.00
field SFFloat MX64-vel-12V 6.60
field SFFloat MX64-damping-12V 1.51
field SFFloat MX64-friction-12V 1.42
field SFFloat MX106-torque-12V 8.40
field SFFloat MX106-vel-12V 4.71
field SFFloat MX106-damping-12V 0.79
field SFFloat MX106-friction-12V 2.14

]
{

Robot {
translation IS translation
rotation IS rotation
name IS name
controllerArgs IS controllerArgs
customData IS customData
...

}
}

As mentioned in the README provided by Cyberbotics, you should parse the name field and ensure your robot
adapts to it to display its team color and player number:

if fields.name.value ~= '' then
-- name is supposed to be something like "red player 2" or "blue player 1"
local words = {}
for word in fields.name.value:gmatch("%w+") do table.insert(words, word) end
local color = words[1]
local number = words[3]

Then, the color and number variables should be used by your PROTO file to display the requested color and player
number. This can be achieved by forging a texture name from these variables or using them directly to assign
material colors, create shapes, etc.

Finally, selfCollision should be activated on all your models.

Embedding a robot

Depending on how a robot is declared, the performances of reloading the initial state position of the joints can be
critically impacted, therefore, it is mandatory to include your robot in a PROTO template file which includes the
robot previously presented as below:

#VRML_SIM R2022b utf8

PROTO MyRobotRobocup [
field SFVec3f translation 0 0 0
field SFRotation rotation 0 1 0 0
field SFString name "red player 1"
field MFString controllerArgs []
field SFString customData ""

]
{

MyRobot {

2

https://github.com/cyberbotics/webots/blob/feature-robocup-controllers/projects/samples/contests/robocup/README.md

translation IS translation
rotation IS rotation
name IS name
controllerArgs IS controllerArgs
customData IS customData
controller "player"

}
}

Sensors

For several sensors, a Look up Table (LUT) is used to specify the response of the sensor. This information is also
used to specify the limits (min and max) for each sensor and the noise profile. This table should always be set
according to the hardware specifications of the sensor you are modelling.

The following list of sensors is allowed with the restrictions mentioned here:

• Position sensors
– The resolution of sensors should match the hardware specifications. For example, a 12 bit rotary encoder

(like in the Dynamixel) has a resolution of 2π
212 ≈ 0.0015.

• Accelerometer
– LUT should be specified

• Gyro
– LUT should be specified

• Touch Sensor
– The 3 different options allowed are Bumper, Force, Force-3d.
– Since the calculation of forces in the simulation is inherently noisy, no extra noise needs to be modeled

for these sensors.
• Cameras

– The maximal amount of raw data that a team is allowed to create through cameras is set to 350MB/s
(MegaByte/second) per team (based on raw RGB images). Note that the seconds considered here are
simulated seconds, which means that this limit is not impacted by the speed factor of the simulation. This
requirement ensures that the rendering of images is not slowing down the simulation. A few examples of
valid configurations are provided in the appendix.

Note: for the accelerometer and Gyro sensors, an offset drifting slowly will be added inside the simulator. This will
model the fact that those sensors are highly sensitive to parameters such as the temperature. These parameters,
however, will not be accessible in the PROTO file.

Actuators

Active joints can be implemented in two different ways:

• HingeJointWithBacklash for angular articulations, with the following child:
– A RotationalMotor
– The backlash set according to the real hardware and the simulation constraints, see below.
– Parameters maxTorque and maxVelocity are set according to the detailed procedure below
– The jointParameters should be set according to the real hardware parameters.

∗ springConstant: If your robot has a Parallel Elastic Actuator (PEA) a spring force matching the
real robots PEA may be specified.
· Parameters dampingConstant and staticFriction are set according to the detailed procedure

below
• Hinge2JointWithBacklash for angular articulations around two axes. This is preferred when possible as it

speeds up the simulation.
– Parameters are the same as for the HingeJoint but need to be set for each motor individually

• SliderJoint for linear articulations, with the following child
– A linear motor with the field maxForce set to a value matching the hardware specifications.
– JointParameters should be set similar to the joint parameters of a HingeJoint

Both types of joints need to have the following child as well:

3

https://cyberbotics.com/doc/reference/distancesensor#lookup-table
https://cyberbotics.com/doc/reference/positionsensor
https://cyberbotics.com/doc/reference/accelerometer
https://cyberbotics.com/doc/reference/gyro
https://cyberbotics.com/doc/reference/touchsensor
https://cyberbotics.com/doc/reference/camera
https://github.com/cyberbotics/webots/blob/develop/docs/guide/hinge-joint-with-backlash.md
https://cyberbotics.com/doc/reference/rotationalmotor
https://cyberbotics.com/doc/reference/jointparameters
https://github.com/cyberbotics/webots/blob/develop/docs/guide/hinge-2-joint-with-backlash.md
https://cyberbotics.com/doc/reference/sliderjoint
https://cyberbotics.com/doc/reference/linearmotor

• A position sensor matching the constraints expressed in the previous section

Backlash values Using low values for backlash (i.e. below 0.01 rad) can lead to instabilities. Many teams use
robots with a backlash lower than 0.01 rad (e.g. the values provided in the datasheet of MX-28 result with a
backlash of approximately 0.0058 rad). Since the backlash value of servo motors that are strongly used tend to
increase significantly, we chose to use the following approach based on the backlash provided by the datasheets:

• If backlash < 0.002 rad, then you are allowed to play without backlash: i.e. use HingeJoint rather than
HingeJointWithBacklash.

• If 0.002 rad <= backlash <= 0.01 rad, then you need to use a backlash value of 0.01.
• If backlash > 0.01 rad, then you can play with the value provided by the datasheet.

Actuator and Joint Parameters The following parameters need to be derived from the Motor specifications: -
maxTorque - maxVelocity - dampingConstant - staticFriction

The following procedure should be used to determine these values from the datasheet:

maxTorque = stallTorque

maxVelocity = maxVelocity

To generate the other two parameters, the NT-Curve of the motor is used. It is assumed to be linear for simplicity.
The damping constant is the negative value of the slope of the NT-Curve. To calculate it, the end points of the
curve are read and the slope is calculated.

Static friction is calculated via the intersection of the NT-Curve with the x-axis to get the effectiveTorque. Then
staticFriction = stallTorque - effectiveTorque

When multiple operating voltages are available, but only an NT-Curve for one of them (as is the case for the
Dynamixel motors), the values are scaled up accordingly.

To illustrate the whole procedure we will look at the MX28 datasheet.

At 12V: - maxTorque = stallTorque = 2.5 Nm - maxVelocity = maxVelocity = 55 rev/min = 5.76 rad/s

We read the two endpoints of the NT-curve as Point1 = (0.112 Nm, 49 rev/min = 5.13 rad/s), Point2 = (1.288
Nm, 12 rev/min = 1.26 rad/s). To get the dampingConstant we calculate the negative slope (with flipped axes):

vel_diff = (Point2.y - Point1.y) torque_diff = (Point2.x - Point1.x)

dampingConstant = -(torque_diff / vel_diff) = -((1.288 - 0.112) / (1.26 - 5.13)) = 0.30

To get the static friction, the effectiveTorque is calculated as the intersection of the NT-curve with the y-axis:

effectiveTorque = -(Point1.y / (vel_diff /torque_diff)) - Point1.x = 1.67

staticFriction = stallTorque - effectiveTorque = 2.5 - 1.67 = 0.83

When a voltage different from 12V is used, the points read in the graph are scaled in the x-axis by the torque scaling
factor and in the y-axis by the velocity scaling factor.

velocityScalingFactor = maxVelocityAt14_8V / maxVelocityAt12V

torqueScalingFactor = maxTorqueAt14_8V / maxTorqueAt12V

To ease the the process of creating your PROTO files, two elements are provided in the appendix:

• The parameters computed for classical dynamixel motors.
• A script allowing to compute these values easily from the datasheet of your own motors.

Structure of the robot

Teams should provide in a dedicated file named postures.json the configurations to be used:

• For upright posture (with fully extended knee)
• Longest extension posture

4

https://emanual.robotis.com/docs/en/dxl/mx/mx-28-2/
https://emanual.robotis.com/docs/en/dxl/mx/mx-28-2/

The format of the file should be as follows (values in rad):

{
"robot_name" : "MyRobotName",
"upright" : {

"motor_1_name": 0.123,
"motor_2_name": 0.456,
...

},
"extension": {

"motor_1_name": 0.123,
"motor_2_name": 0.456,
...

}
}

Node Name Suffixes Each robot needs to comport body parts with the following annotations as suffixes on the
Solid names:

• [foot]: for the two main solids at the end of the kinematic chain of the legs (e.g. Solid.name "left foot
[foot]"). Solids which are descendants of a [foot] are considered as valid for walking (e.g. cleats), but they
should not be tagged as [foot].

• [arm]: for all body parts between shoulder and hand. Those parts are not allowed to touch the ball
(e.g. Solid.name "left elbow [arm]").

• [hand]: each robot must have two solids declared as hands. Those solids might have a very low mass and
volume, but the center of the solid should be at the end of the arm. Those annotations are used to compute
the convex hull of the robot. Examples of valid and invalid annotations are provided in the appendix.

Some joints (i.e., motors) should also be annotated with the following suffixes:

• [shoulder]: axis of the first joint of the arm (e.g. name "right shoulder pitch [shoulder]").
• [hip]: for the first leg joint with an axis lying parallel to the ground plane (e.g. name "left hip roll

[hip]").

Annotations of the joints should be made in the name field of the device, as seen in the following example:

HingeJointWithBacklash{
jointParameters HingeJointParameters {
...

}
device [

RotationalMotor {
name "LeftHipRoll [hip]"
...

}
PositionSensor {

...
}

]
}

Tagged solids Some of the links of the robot model must be tagged uniformly to be able to track the robot’s
motion for further analysis. This standard is defined on the basis of REP 120.

Every coordinate frame must be defined in FLU (front, left, up), except otherwise defined. These solids/transforms
are just for reference and do not require additional collision boxes. This tagging is done in the proto file using the
DEF keyword.

The following coordinate frames must be included in the model:

• base_link

5

https://www.ros.org/reps/rep-0120.html

• l_sole and r_sole
• l_gripper and r_gripper: same solid as the [hand] tag
• either camera_frame or l_camera_frame and r_camera_frame: at the Camera solid. l_ and r_ prefix if two

cameras are used.

The model is not required to comply with the frame hierarchy presented in REP 120.

Example tagged solids:

DEF l_sole Solid {
translation ...
rotation ...
name "l_sole"
...

}
...
DEF camera_frame Camera {

width ...
height ...
...

}

Guidelines for writing your models
For general guidelines on how protos should be written please view the Cyberbotics documentation. Make sure to
follow the design guidelines, especially concerning the FLU system for orientation.

Usage of the DEF/USE mechanism as well as splitting up the PROTO into multiple subfiles (especially each visual or
more complex collision model in its own file) is encouraged.

If you already have a URDF of your robot, using urdf2webots can give you a good starting point but manual
adjustments are probably required.

If you agree that your robot model is made available to other teams and the public, we suggest adding a license on
top of the PROTO file.

Collision model complexity

Since simulation has to be performed at a reasonable real time factor, collision models (e.g., boundingObject) should
be constructed from Webots geometric primitives (box, capsule, cylinder, sphere). Using meshes (e.g. STL files),
even simple ones with a low number of vertices is severely impacting simulation performances and is not allowed. If
your robot is using cleats under the feet, they must be modeled using capsules or spheres rather than cylinders.
This will reduce the computational complexity of calculating the contact between the grass and the cleats.

To manually create these collision models we suggest to use the SCAD2BoundingObject tool.

If you are already using a URDF model of your robot, rotated bounding boxes can be generated using the
simplify_urdf_collision tool.

Visual model

While visual model complexity (i.e., the number of triangles) is a lesser issue than collision model complexity, it
should still be set reasonably low (i.e. below 50 000 vertices in total).

When exporting a model from a CAD software, the resolution of the mesh approximation can usually be set. When
only a mesh model is available, sofware such as Meshlab’s Quadratic Edge Collapse Decimation can be used.

We suggest to apply an Appearance or PBRAppearance matching the real robot. Several appearances are provided
by Cyberbotics and described here.

6

https://www.ros.org/reps/rep-0120.html
https://cyberbotics.com/doc/reference/proto
https://cyberbotics.com/doc/reference/proto-design-guidelines#orientation
https://github.com/cyberbotics/urdf2webots
https://github.com/bit-bots/SCAD2BoundingObject
https://github.com/bit-bots/simplify_urdf_collision
https://www.youtube.com/watch?v=PWM6EGVVNQU
https://cyberbotics.com/doc/reference/appearance
https://cyberbotics.com/doc/reference/pbrappearance
https://www.cyberbotics.com/doc/guide/appearances

Model inspections
The inspection of the models will be based on the following elements:

• The content of the PROTO model and the associated files.
• The documentation provided describing how you obtained the different characteristics for your actuators and

your sensors.
• The postures.json file.

The inspection will be performed based on 3 different parts:

• Semi-automated validation: to automatically check geometric proportions and provide a summary of the main
characteristics for each robot.

• Peer-reviewed validation: manual check that the provided PROTO files respect the rules for some elements that
cannot be checked automatically.

• TC Validation: manual verification of the issues risen by the teams and additional checks on submission
materials.

Semi-automated validation

The following properties of the robot are extracted automatically:

• Htop: In upright posture, the amplitude along the z component.
• Hleg: In upright posture, z component between [hip] and the minimal value of the robot along z-axis.
• Hhead: In upright posture, z component between [shoulder] and the maximum value along z-axis.
• M: the total mass of the robot.
• Hcom: In upright posture, the height of center of mass.
• ArmsLength: The distance from [shoulder] to the end of the arm ([hand])
• BMI = M/Htopˆ2
• Width: In upright posture, the diameter of the smallest cylinder in which the robot can fit.
• FootWidth, FootLength: The size along y (resp x) axis of the bounding box for one foot.
• MaxLength: The maximal distance between two points of the robot in longest extension posture.

The following constraints are checked automatically

• 5 <= BMI <= 30
• (FootWidth*FootHeight) <= (2.2*Hcom)ˆ2/32
• 1.2 <= max(FootWidth,FootHeight)/min(FootWidth, FootHeight) <= 3.5
• Width <= 0.55 Htop
• 0.35 Htop <= Hleg <= 0.7 Htop
• 0.1 Htop <= Hhead <= 0.3 Htop
• ArmsLength >= Htop - Hleg - Hhead
• Only allowed sensors/actuators are used

– All required fields are set (e.g., LUT)
• Only geometric primitives used as collision model
• Complexity of visual model

A document containing the following information is generated from the robot model:

• List of the properties of the robot model extracted automatically
• List of all the joints with all parameters specified in the respective section
• List of the sensors and their parameters
• Kinematic structure of the robot

Peer-reviewed validation

The points that should be validated during the review process are the following:

• Are specifications for custom actuators valid?
• Are specifications for sensors valid?
• Are the annotations of the solids ([foot], [arm] and [hand]) and the links ([shoulder] and [hip]) consistent

with the rules?

7

• Is the collision model adapted to the structure of the robot?
• Are the color markers of appropriate size, color and location?
• Is the upright posture valid?
• Is the extension posture valid?
• Is there any other reason why this model should not be accepted?

Upload format
All robot models for a team must be submitted via a GitHub Pull Request on this repository: https://github.com
/RoboCup-Humanoid-TC/hlvs_webots.

The structure of the repository is as follows:

hlvs_webots
|-- protos
| |-- <Team Name>
| | |-- documentation
| | | |-- documentation.pdf
| | | |-- datasheet1.pdf
| | | |-- ...
| | |-- RobotName1
| | | |-- RobotName1.proto
| | | |-- postures.json
| | | |-- ...
| | |-- RobotName2
| | | |-- RobotName2.proto
| | | |-- postures.json
| | | |-- ...
|-- controllers
| |-- referee
| | |-- teams
| | | |-- <Team Name>.json

... indicates optional further datasheets or documents in the documentation folder and any other file requested of
the robot model in the robot folders. Up to four robot models in KidSize and two robot models in AdultSize may be
included in the submission, however, if all your robots are similar, uploading one version is enough.

Appendix
Valid configurations for cameras

Robots/team Cameras/robot Img width Img height Time step [ms] Bandwidth [MB/s]
2 1 1280 720 16 330
4 1 800 600 16 343
3 2 640 480 16 330

Values for classical dynamixel motors

The TC provides the following list of parameters that can be used for Dynamixel motors:

MX28-torque-12V 2.50
MX28-vel-12V 5.76
MX28-damping-12V 0.30
MX28-friction-12V 0.83

MX28-torque-14.8V 3.10
MX28-vel-14.8V 7.02
MX28-damping-14.8V 0.31

8

https://github.com/RoboCup-Humanoid-TC/hlvs_webots
https://github.com/RoboCup-Humanoid-TC/hlvs_webots

MX28-friction-14.8V 1.03

MX64-torque-12V 6.00
MX64-vel-12V 6.60
MX64-damping-12V 0.66
MX64-friction-12V 1.42

MX64-torque-14.8V 7.30
MX64-vel-14.8V 8.17
MX64-damping-14.8V 0.65
MX64-friction-14.8V 1.73

MX106-torque-12V 8.40
MX106-vel-12V 4.71
MX106-damping-12V 1.26
MX106-friction-12V 2.14

MX106-torque-14.8V 10.00
MX106-vel-14.8V 5.76
MX106-damping-14.8V 1.23
MX106-friction-14.8V 2.55

XH540W270-torque-12V 10.60
XH540W270-vel-12V 3.14
XH540W270-damping-12V 2.95
XH540W270-friction-12V 1.23

XH540W270-torque-14.8V 12.90
XH540W270-vel-14.8V 3.87
XH540W270-damping-14.8V 2.92
XH540W270-friction-14.8V 1.49

Script to approximate motor parameters

In case you need to approximate motor parameters for other motors, you can reuse this script to compute their
values.

import math

VAR_LENGTH = 30

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

class JointSpecs:
def __init__(self, name, max_tor_12V, max_tor_14_8V, max_vel_12V_rpm, max_vel_14_8V_rpm,

NT_curve_point_1, NT_curve_point_2):
self.name = name
self.max_tor_12V = max_tor_12V
self.max_tor_14_8V = max_tor_14_8V
self.max_vel_12V_rpm = max_vel_12V_rpm
self.max_vel_14_8V_rpm = max_vel_14_8V_rpm
self.NT_curve_point_1_12V = NT_curve_point_1
self.NT_curve_point_2_12V = NT_curve_point_2

9

convert to rad/s
self.max_vel_12V = self.max_vel_12V_rpm * math.tau / 60
self.max_vel_14_8V = self.max_vel_14_8V_rpm * math.tau / 60
self.NT_curve_point_1_12V.y = self.NT_curve_point_1_12V.y * math.tau / 60
self.NT_curve_point_2_12V.y = self.NT_curve_point_2_12V.y * math.tau / 60

scale N-T points from 12V to 14_8V
self.scale_factor_tor = self.max_tor_14_8V / self.max_tor_12V
self.scale_factor_vel = self.max_vel_14_8V / self.max_vel_12V
self.NT_curve_point_1_14_8V = Point(

self.NT_curve_point_1_12V.x * self.scale_factor_tor,
self.NT_curve_point_1_12V.y * self.scale_factor_vel)

self.NT_curve_point_2_14_8V = Point(
self.NT_curve_point_2_12V.x * self.scale_factor_tor,
self.NT_curve_point_2_12V.y * self.scale_factor_vel)

def get_values(self, use_14_8V):
choose correct values based on voltage
if use_14_8V:

stall_torque = self.max_tor_14_8V
vel = self.max_vel_14_8V
point_1 = self.NT_curve_point_1_14_8V
point_2 = self.NT_curve_point_2_14_8V

else:
stall_torque = self.max_tor_12V
vel = self.max_vel_12V
point_1 = self.NT_curve_point_1_12V
point_2 = self.NT_curve_point_2_12V

vel_diff = (point_2.y - point_1.y)
torque_diff = (point_2.x - point_1.x)
a = vel_diff / torque_diff
b = point_1.y - (point_1.x * a)

compute torque at vel=0
0 = a*x+b -> x = -b / a
torque_vel0 = -b / a
friction = stall_torque - torque_vel0

damping_constant = -torque_diff / vel_diff

self.print_value("torque", stall_torque, use_14_8V)
self.print_value("vel", vel, use_14_8V)
self.print_value("damping", damping_constant, use_14_8V)
self.print_value("friction", friction, use_14_8V)
print("")

def print_value(self, property_name, value, use_14_8V):
v_text = "14.8V" if use_14_8V else "12V"
var_name = (f"{self.name}-{property_name}-{v_text}").ljust(VAR_LENGTH)
print(f"{var_name}{value:5.2f}")

def print_all_values(self):
self.get_values(False)
self.get_values(True)

10

max_tor_12V, max_tor_14_8V, max_vel_12V_rpm, max_vel_14_8V_rpm, NT_curve_point_1, NT_curve_point_2
JointSpecs("MX28", 2.5, 3.1, 55, 67, Point(0.112, 49),

Point(1.288, 12)).print_all_values()
JointSpecs("MX64", 6.0, 7.3, 63, 78, Point(0.15, 64),

Point(2.85, 25)).print_all_values()
JointSpecs("MX106", 8.4, 10, 45, 55, Point(0.7, 42),

Point(5.6, 5)).print_all_values()
JointSpecs("XH540W270", 10.6, 12.9, 30, 37, Point(0.4, 29),

Point(8.6, 2.5)).print_all_values()

Configuration of hand

Figure 1: Valid configuration for the [hand] tag, fake solid at the end of the arm (green)

11

Figure 2: Invalid configuration for the [hand] tag, last solid at the end of the arm (green)

12

	Robot Model Specifications v2.0
	Introduction
	Model constraints
	Exported parameters
	Embedding a robot
	Sensors
	Actuators
	Structure of the robot

	Guidelines for writing your models
	Collision model complexity
	Visual model

	Model inspections
	Semi-automated validation
	Peer-reviewed validation

	Upload format
	Appendix
	Valid configurations for cameras
	Values for classical dynamixel motors
	Script to approximate motor parameters
	Configuration of hand

